Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Supporting Information II

relative energies, OH (H₂O)₈₋₂₆

Structure and Solvation Dynamics of the Hydroxide Ion in Icelike Water Clusters: a CCSD(T) and Car-Parrinello Molecular Dyanmics Study

Kono H. Lemke*

*Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, SAR,*e-mail: kono@hku.hk

Fig. S1) MP2/aVDZ structures, CCSD(T)/aVDZ and CCSD(T)/aVDZ:MP2/aVDZ relative energies (ΔE_e) of five lowest energy OH⁻(H₂O)₈ conformers.

Fig. S2) MP2/aVDZ structures, CCSD(T)/aVDZ//MP2/aVDZ and CCSD(T)/aVDZ:MP2/aVDZ relative energies (ΔE_e) of five lowest energy OH⁻(H₂O)₉ conformers.

Fig. S3) MP2/aVDZ structures, MP2/aVDZ ZPE-corrected relative energies (ΔE_o), CCSD(T)/aVDZ//MP2/aVDZ and ONIOM CCSD(T)/aV(D,T)Z: MP2/aV(D,T)Z relative energies (ΔE_e) of the five lowest energy OH⁻(H₂O)₁₀ conformers.

Fig. S4) MP2/aVDZ structures, MP2/aVDZ ZPE-corrected relative energies (ΔE_o), CCSD(T)/aVDZ//MP2/aVDZ and ONIOM CCSD(T)/aV(D,T)Z:MP2/aV(D,T)Z relative energies (ΔE_e) of five lowest energy OH⁻(H₂O)₁₁ conformers.

Fig. S5) MP2/aVDZ structures, MP2/aVDZ ZPE-corrected relative energies (ΔE_o), CCSD(T)/aVDZ//MP2/aVDZ and ONIOM CCSD(T)/aV(D,T)Z:MP2/aV(D,T)Z relative energies (ΔE_e) of the five lowest energy OH⁻(H₂O)₁₂ conformers.

Fig. S6) MP2/aVDZ structures, MP2/aVDZ ZPE-corrected relative energies (ΔE_o), and ONIOM CCSD(T)/aV(D,T)Z:MP2/aV(D,T)Z relative energies (ΔE_e) of the five lowest energy OH⁻(H₂O)₁₃ conformers.

Fig. S7) MP2/aVDZ structures, MP2/aVTZ relative energies (ΔE_e), MP2/aVDZ ZPE-corrected relative energies (ΔE_o), and ONIOM CCSD(T)/aV(D,T)Z:MP2/aV(D,T)Z relative energies (ΔE_e) of the five lowest energy OH⁻(H₂O)₁₄ conformers.

Fig. S8) MP2/aVDZ structures, MP2/aVTZ relative energies (ΔE_e), MP2/aVDZ ZPE-corrected relative energies (ΔE_o), and ONIOM CCSD(T)/aV(D,T)Z:MP2/aV(D,T)Z relative energies (ΔE_e) of the five lowest energy OH⁻(H₂O)₁₅ conformers.

Fig. S9) MP2/aVDZ structures, MP2/aVTZ relative energies (ΔE_e), MP2/aVDZ ZPE-corrected relative energies (ΔE_o), and ONIOM CCSD(T)/aV(D,T)Z:MP2/aV(D,T)Z relative energies (ΔE_e) of the five lowest energy OH⁻(H₂O)₁₆ conformers.

Fig. S10) MP2/aVDZ structures, MP2/aVTZ relative energies (ΔE_e), MP2/aVDZ ZPE-corrected relative energies (ΔE_o), and ONIOM CCSD(T)/aV(D,T)Z:MP2/aV(D,T)Z relative energies (ΔE_e) of the five lowest energy OH⁻(H₂O)₁₇ conformers.

Fig. S11) MP2/aVDZ structures and relative energies (ΔE_e), B3LYP-D3/aVDZ ZPE-corrected relative energies (ΔE_o), and ONIOM CCSD(T)/aVDZ:MP2/aVDZ relative energies (ΔE_e) of the five lowest energy OH⁻(H₂O)₂₃ conformers.

Fig. S12) MP2/aVDZ structures and relative energies (ΔE_e), MP2/aVTZ//MP2/aVDZ relative energies (ΔE_e), B3LYP-D3/aVDZ ZPE-corrected relative energies (ΔE_o), and ONIOM CCSD(T)/aVDZ:MP2/aVDZ relative energies (ΔE_e) of the five lowest energy OH(H₂O)₂₆ conformers.