
 S   1 

Electronic Supplementary Information for: 

 

Phase Stability of the Tin monochalcogenides SnS and SnSe: a Quasi-
Harmonic Lattice-Dynamics Study  

 

 

Ioanna Pallikaraa and Jonathan M. Skelton*a 

 

1Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK 

*E-Mail: jonathan.skelton@manchester.ac.uk 

  

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2021



 S   2 

 

Figure S1. Optimised structures of Pnma, Cmcm, rocksalt and π-cubic SnS. These images were 
produced using the VESTA software.1 

 

 

Figure S2. Phonon dispersion and density of states curves and vibrational Helmholtz free 
energy of the π-cubic phases of SnS (a) and SnSe (b) computed using two k-point meshes with 
2 × 2 × 2 and 4 × 4 × 4 subdivisions. Both calculations were performed on the equilibrium 
structure using the 64-atom unit cell, so the equivalent k-point meshes for the 2 × 2 × 2 
supercell used in the production calculations would be meshes with 1 × 1 × 1 (i.e. the Γ point) 
and 2 × 2 × 2 subdivisions. 
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Figure S3. Calculated electronic atom- and orbital-projected density of states (DoS) curves for 
the rocksalt phases of (a) SnS and (b) SnSe. The states are colored as follows: Sn(s) - blue, 
Sn(d) - yellow, Sn(p) - green, S/Se(s) - cyan, S/Se(p) - red and total DoS - black. 
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Table S1. Calculated electronic bandgaps of the four phases of SnS (top) and SnSe (bottom) 
obtained using the PBEsol + D3 functional, with experimental and theoretical data for 
comparison where available. 

  

Bandgaps: SnS [eV] 

Phase 
PBEsol + D3 
(this work) Experiments Other DFT studies 

Rocksalt 0.15 - 0.522 

Pnma 0.579 1.33-1.63 1.3524,1.85 

Cmcm 0.549 - 1.45 

π-cubic 1.13 (indirect) 1.536 1.747 

Bandgaps: SnSe [eV] 

Phase 
PBEsol + D3 
(this work) Experiments Other DFT studies 

Rocksalt 0.253 - 0.582 

Pnma 0.423 0.898, 1.0-1.29  0.7910, 1.18,4 0.411 

Cmcm 0.234 0.398 0.0511 

π-cubic 0.856 (indirect) 1.2812 
0.799/1.011 
(LDA/GGA)13 
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Figure S4 Phonon free energy 𝐹𝑉 as a function of volume for the eight tin monochalcogenide 
phases examined in this work at 𝑇 = 0, 300 and 1000 K. For the Cmcm phases in (b) and (f), 
the data overlaid in black shows the 𝐹𝑉 obtained after renormalisation of the principal 
imaginary modes at the Γ and Y wavevectors. 
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Figure S5. Effective renormalised frequencies of the two imaginary modes of Cmcm SnS (a) 
and SnSe (b) at the equilibrium volume, as a function of temperature, obtained using the 
method in Ref. 14. 
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Figure S6. Anharmonic double-well potentials along the two principal imaginary modes at the 
Y and Γ wavevectors of Cmcm SnS (top) and SnSe (bottom) at the equilibrium volume. The 
black lines inside the potentials show the eigenvalues obtained by solving a 1D Schrödinger 
equation for the potential. 
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Figure S7. Phonon dispersion and density of states curves for SnS ((a)-(d), left) and SnSe ((e)-
(h), right) under up to 15 % volume compression: (a)/(e) Pnma, (b)/(f) Cmcm, (c)/(g) rocksalt 
and (d)/(h) π-cubic. 
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Figure S8. Gibbs energy differences ΔGPnma between the Pnma and Cmcm phases of (a) SnS 
and (b) SnSe before (pink) and after renormalization of the imaginary harmonic modes 
(black). 
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Figure S9. Calculated volume per formula unit as a function of temperature for the Pnma 
(purple) and Cmcm (light blue) phases of (a) SnS and (b) SnSe. The black stars track the 
volumes of the phases with the lowest-energy Gibbs free energy to highlight expected 
discontinuities in the volume at the phase transition. 
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Figure S10. Calculated bulk modulus as a function of temperature for the Pnma (purple), 
Cmcm (light blue), π-cubic (purple) and rocksalt (pink) phases (a) SnS and (b) SnSe. 
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Figure S11. Calculated Grüneisen parameter as a function of temperature for the Pnma 
(purple), Cmcm (light blue), π-cubic (purple) and rocksalt (pink) phases (a) SnS and (b) SnSe. 
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Figure S12. Optimized structures of Pnma and Cmcm SnS (a) and SnSe (b) at a range of applied 
pressures. The images were produced using the VESTA software.1 
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Figure S13 Calculated temperature-pressure phase diagrams of (a) SnS and (b) SnSe, obtained 
based on the Gibbs energies calculated within the quasi-harmonic after renormalization of 
the imaginary harmonic modes in the Cmcm phases. This may be compared with Fig. 9 in the 
text. 
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Figure S14. Potential-energy surface (PES) along the two principal imaginary modes at the Y- 
and Γ wavevectors in Cmcm SnS (a)/(b) and SnSe (e)/(f), evaluated at the equilibrium volume 
and 3 % expansions and compressions. (c)/(g) Two-dimensional PES spanned by both 
imaginary modes at the equilibrium volumes for (c) SnS and (g) SnSe. (d)/(h) Comparison of 
the 2D PES for the three volumes shown in (a)/(b) and (e)/(f). 
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Figure S15. Structures of SnS associated with the minima in the 1D potential-energy surface 
(PES) obtained by mapping the Y-point imaginary mode in the equilibrium structure. (a) 
Minimum at Q = -3.5 amu1/2 Å. (b) Maximum at Q = 0. (c) Minimum at Q = +3.5amu1/2 Å. (a) 
and (c) correspond to the distorted Pnma phase, while (b) corresponds to the Cmcm average 
structure. 
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Figure S16. Structures of the initial (rocksalt), transition state (TS), and final (π-cubic) 
structures of SnS (a) and SnSe (b) obtained from the climbing image nudged elastic band (CI-
NEB) calculations. These images were produced by the VESTA software.1 
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