Electronic Supporting Information

Controlled 2H/1T Phase Transition in MoS₂ Monolayer by Strong Interface with

M₂C MXene: A Computational Study

Zhongxu Wang,^a Yu Liu,^b FengYu Li,^{b,*} Jingxiang Zhao^{a,*}

^a Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University Harbin, 150025, China
^b School of Physical Science and Technology, Inner Mongolia University, Hohhot,

010021, China

* To whom correspondence should be addressed. Email: fengyuli@imu.edu.cn and xjz_hmily@163.com.

	lattice parameters	bond length
Ti ₂ C	3.04	2.10
V_2C	2.88	1.99
Cr ₂ C	2.80	1.93
Zr ₂ C	3.27	2.27
Nb ₂ C	3.11	2.16
Mo ₂ C	2.98	2.09
Hf ₂ C	3.20	2.24
Ta ₂ C	3.07	2.15
W ₂ C	2.96	2.09
1T-MoS ₂	3.13	2.43
2H-MoS ₂	3.17	2.40

Table S1. The computed lattice parameters (Å) and bond lengths (Å) of various M_2C -typed MXenes, 1T-MoS₂, and 2H-MoS₂ monolayers.

Fig. S1. The computed band structures of pristine (a) $1T-MoS_2$, (b) $2H-MoS_2$, (c) Ti_2C , (d) Zr_2C , (e) Hf_2C , (f) Nb_2C , and (g) Ta_2C nanosheets. The Fermi level was set to zero.

Fig. S2. The computed lattice mismatch (γ) between 1T- or 2H-MoS₂ monolayers and M₂C-type MXene nanosheets.

Fig. S3. The considered initial configrations for (a) and (b) $1T-MoS_2$, (c) and (d) 2H-

 MoS_2 monolayer on M_2C -MXenes.

Fig. S4. The computed phonon dispersions of $1T-MoS_2/M_2C$ heterostructures, where M represents (a) Ti, (b) Zr and (c) Hf, respectively.

Fig. S5. The iso-surface of the spin-resolved density pictures of (a) $1T-MoS_2/Ti_2C$, (b) $1T-MoS_2/Zr_2C$, and (c) $1T-MoS_2/Hf_2C$ heterostructures. The iso-value is set to be 0.005 eÅ⁻².

Fig. S6. The crystal orbital Hamilton population (COHP) between the S and metal atoms in $2H-MoS_2/M_2C$ heterostructures.

Fig. S7. The computed band structures of $2H-MoS_2/M_2C$ heterostructures, where M represents (a) Ti, (b) Zr, (c) Hf, (d) Nb, and (e) Ta, respectively. The Fermi level was set to zero.