Microstructures and electronic characters of β -Ga₂O₃ on different substrates: Exploring the

role of surface chemistry and structure

Naxin Zhu^a, Xiangyi Xue^a, Jie Su^{a,b*}

^a State Key Lab of Solidification Processing, College of Materials Science and Engineering,

Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China

^b State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of

Microelectronics, Xidian University, Xi'an 710071, China

E-mail: sujie@xidian.edu.cn

Figure S1. Side views of β -Ga₂O₃, and β -Ga₂O₃ (-201) surfaces, SiC (0001) surfaces, MgO (001) surfaces, Al₂O₃ (001) surfaces with different terminations.

Figure S2. Side views of Al_2O_3 - Ga_2O_3 and MgO- Ga_2O_3 interfaces with different terminations.

Figure S3. Side views of SiC-Ga₂O₃ interfaces with different terminations.

Table S1. The lattice strain along a and b direction and the average lattice strain of β -Ga₂O₃ in these different Al₂O₃-Ga₂O₃, MgO-Ga₂O₃, and SiC-Ga₂O₃ interfaces. The difference of dangling bonds between Ga₂O₃ and substrate part in these substrate-Ga₂O₃ interfaces with different terminations.

Interface	Strain (%)			
	a direction	b direction	average	Dangling bonds
$Al_2O_{3\parallel Al}-Ga_2O_{3\parallel OGal}$	10.35	2.55	4.3	2
$Al_2O_{3\parallel Al}-Ga_2O_{3\parallel OGa2}$	10.35	2.55	4.3	1
$Al_2O_{3\parallel O}-Ga_2O_{3\parallel Ga1}$	10.35	2.55	4.3	12
$Al_2O_{3\parallel O}-Ga_2O_{3\parallel Ga2}$	10.35	2.55	4.3	12
MgO-Ga ₂ O _{3 OGa1}	-0.34	-3.75	-1.36	8
MgO-Ga ₂ O _{3 OGa2}	-0.34	-3.75	-1.36	8
$MgO\text{-}Ga_2O_{3\parallel Ga1}$	-0.34	-3.75	-1.36	2
$MgO-Ga_2O_{3\parallel Ga2}$	-0.34	-3.75	-1.36	5
$SiC_{\parallel C}$ -Ga ₂ O _{3 \parallel OGa1}	5.73	-1.29	2.52	0
$\mathrm{SiC}_{\parallel \mathrm{C}}$ - $\mathrm{Ga}_{2}\mathrm{O}_{3\parallel \mathrm{OGa2}}$	5.73	-1.29	2.52	0
$\operatorname{SiC}_{\parallel C}$ -Ga $_{2}O_{3\parallel Ga1}$	5.73	-1.29	2.52	2
$\mathrm{SiC}_{\parallel \mathrm{C}}$ - $\mathrm{Ga}_{2}\mathrm{O}_{3\parallel \mathrm{Ga2}}$	5.73	-1.29	2.52	4
$SiC_{\parallel Si}$ -Ga $_2O_{3\parallel OGa1}$	5.73	-1.29	2.52	0
SiC _{Si} -Ga ₂ O _{3 OGa2}	5.73	-1.29	2.52	0
$\mathrm{SiC}_{\parallel\mathrm{Si}}$ - $\mathrm{Ga}_{2}\mathrm{O}_{3\parallel\mathrm{Gal}}$	5.73	-1.29	2.52	2
$\operatorname{SiC}_{ \operatorname{Si}}\operatorname{-}\operatorname{Ga}_{2}\operatorname{O}_{3 \operatorname{Ga2}}$	5.73	-1.29	2.52	4

Interface	VBO (eV)	CBO (eV)	Gap (eV)	Band alignment
$Al_2O_{3_{\parallel O}}\text{-}Ga_2O_{3_{\parallel Ga2}}$	0.02	0.45	2.60	Type-II
$Al_2O_{3_{\parallel O}}\text{-}Ga_2O_{3_{\parallel Gal}}$	0.10	0.23	2.82	Type-II
$Al_2O_{3_{ Al}}-Ga_2O_{3_{ OGa2}}$	0.12	0.50	3.30	Type-II
$Al_2O_{3_{ Al}}\text{-}Ga_2O_{3_{ OGal}}$	0.25	0.94	2.70	Type-II
MgO-Ga ₂ O _{3_{Ga2}}	0.12	0.22	3.42	Type-I
MgO-Ga ₂ O _{3_{Ga1}}	0.65	0.31	2.79	Type-I
$MgO-Ga_2O_{3}_{\parallel OGa2}$	0.15	0.58	3.42	Type-I
$MgO-Ga_2O_{3_{\parallel OGa1}}$	0.25	0.56	3.18	Type-I
$\mathrm{SiC}_{\parallel\mathrm{Si}} ext{-}\mathrm{Ga}_{2}\mathrm{O}_{3}_{\parallel\mathrm{Ga2}}$	0.39	0.07	2.43	Type-II
$sic_{\ si}\text{-}Ga_2O_{3_{\ Ga1}}$	0.45	0.11	2.43	Type-II
$\mathrm{SiC}_{\parallel \mathrm{Si}}$ -Ga $_{2}\mathrm{O_{3}}_{\parallel \mathrm{OGa2}}$	0.06	0.27	3.35	Type-I
$\mathrm{SiC}_{\parallel \mathrm{Si}}$ -Ga $_{2}\mathrm{O_{3}}_{\parallel \mathrm{OGal}}$	0.02	0.42	3.22	Type-I
$\operatorname{SiC}_{\parallel C}$ -Ga ₂ O _{3$\parallel Ga2$}	0.61	0.09	2.75	Type-II
$\operatorname{SiC}_{\parallel C}$ -Ga ₂ O _{3$\parallel Ga1$}	0.39	0.23	2.68	Type-II
$\operatorname{SiC}_{\parallel \mathbb{C}}$ - $\operatorname{Ga_2O_3}_{\parallel \operatorname{OGa2}}$	0.12	0.29	3.05	Type-I
$\operatorname{SiC}_{\parallel \mathbb{C}}$ - $\operatorname{Ga_2O_3}_{\parallel \operatorname{OGal}}$	0.08	0.42	2.98	Type-I

Table S2. The valence band offset (VBO) and conduction band offset (CBO) coupling with the band gap of Ga₂O₃ part in these different Al₂O₃-Ga₂O₃, MgO-Ga₂O₃, and SiC-Ga₂O₃ interfaces.