## **Electronic Supplementary Information**

## Rechargeable Mg-Na and Mg-K hybrid batteries based on low-defect

## Co<sub>3</sub>[Co(CN)<sub>6</sub>]<sub>2</sub> nanocube cathode

Dong Chen<sup>a</sup>, Zhongxue Chen<sup>a,\*</sup>, Fei Xu<sup>a,\*</sup>

<sup>a</sup> Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.

\* Corresponding authors.

E-mail addresses:

zxchen\_pmc@whu.edu.cn (Z. Chen)

xufei2058@whu.edu.cn (F. Xu)

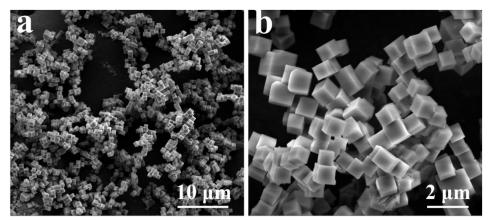
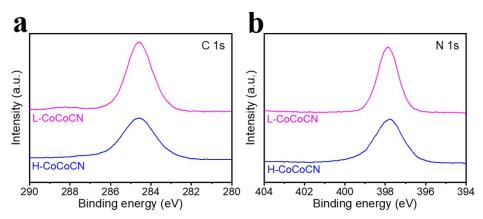




Fig. S1 SEM images of L-CoCoCN.



**Fig. S2** High-resolution XPS spectra of (a) C 1s and (b) N 1s for L-CoCoCN and H-CoCoCN.

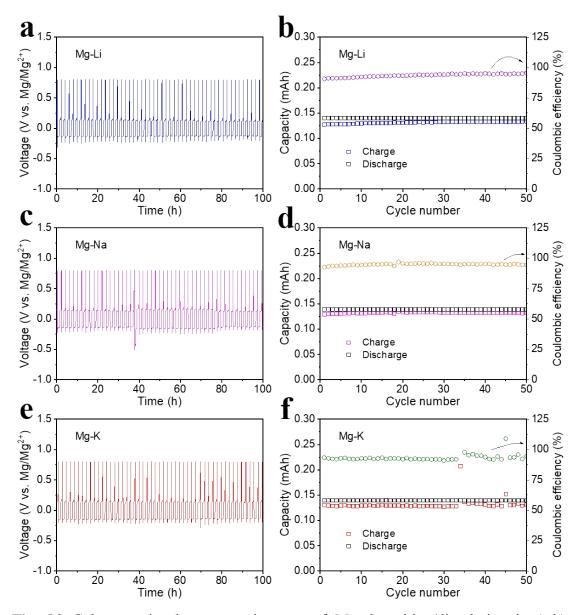



Fig. S3 Galvanostatic chronopotentiograms of Mg deposition/dissolution in (a,b)  $Mg^{2+}/Li^+$ , (c,d)  $Mg^{2+}/Na^+$  and (e,f)  $Mg^{2+}/K^+$  dual-ion electrolytes.

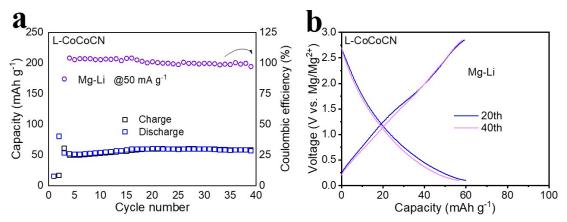



Fig. S4 (a) Discharge/charge profiles and (b) Cycling performance of L-CoCoCN Mg-Li cell at 50 mA  $g^{-1}$ .

**Table S1**. Elements mass percentage of L-CoCoCN and H-CoCoCN determined by EA measurements and calculation.

| Sample   | EA      |          |          | Calculation |          |
|----------|---------|----------|----------|-------------|----------|
|          | Н       | С        | Ν        | 0           | Со       |
| L-CoCoCN | 2.5 wt% | 18.3 wt% | 20.9 wt% | 20.0 wt%    | 38.3 wt% |
| H-CoCoCN | 3.2 wt% | 17.2 wt% | 18.2 wt% | 25.6 wt%    | 35.8 wt% |