Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

### **Supplementary Information**

## There and back again: the role of hyperconjugation in the fluorine gauche effect

Vinícius C. Port,<sup>a</sup> Rodrigo A. Cormanich\*<sup>a</sup>

University of Campinas, Institute of Chemistry, Department of Organic Chemistry, 13083-970 – Campinas, SP, Brazil.

\*Corresponding author: <a href="mailto:cormanich@unicamp.br">cormanich@unicamp.br</a>

## Contents

| Computational Details                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table S1. Atomic Coordinates for the gauche and anti conformers of XCH2CH2X molecules obtained at the M06-2X/6-311++G(3df,2p)    level                                                      |
| Table S2. Atomic Coordinates for the gauche and anti conformers of XBH2NH2X molecules obtained at the M06-2X/6-311++G(3df,2p)    level                                                      |
| Table S3. Atomic Coordinates for the gauche and anti conformers of XCH2OX molecules obtained at the M06-2X/6-311++G(3df,2p)    level                                                        |
| Table S4. Atomic Coordinates for the gauche and anti conformers of XCH <sub>2</sub> SX molecules molecules obtained at the M06-2X/6-311++G(3df,2p) level.    15                             |
| Table S5. Atomic Coordinates for the gauche and anti conformers of XOOX molecules obtained at the M06-2X/6-311++G(3df,2p) level.                                                            |
| Table S6. Atomic Coordinates for the gauche and anti conformers of XSSX molecules obtained at the M06-2X/6-311++G(3df,2p) level.                                                            |
| Table S7. Benchmarking study of methods/functionals (left) and basis sets (right) with respect to the CCSD(T)/CBS level. Mean absolute    deviations are given in kcal mol <sup>-1</sup> 18 |
| Table S8. Geometrical parameters of the XCH2CH2X systems obtained in the M06-2X/6-311++G(3df,2p) level, distances are given in    Å and angles in degrees.                                  |
| Table S9. Geometrical parameters of the XBH2NH2X systems obtained in the M06-2X/6-311++G(3df,2p) level, distances are given in    Å and angles in degrees.                                  |

| Table S10. Geometrical parameters of the XCH <sub>2</sub> OX systems obtained in the M06-2X/6-311++G(3df,2p) level, distances are given by the statement of the the statement of the term of | en in Å |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| and angles in degrees.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21      |
| Table S11. Geometrical parameters of the XCH <sub>2</sub> SX systems obtained in the M06-2X/6-311++G(3df,2p) level, distances are given by the statement of the term of term | en in Å |
| and angles in degrees.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22      |
| Table S12. Geometrical parameters of the XOOX systems obtained in the M06-2X/6-311++G(3df,2p) level, distances are give                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | en in Å |
| and angles in degrees.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23      |
| Table S13. Geometrical parameters of the XSSX systems obtained in the M06-2X/6-311++G(3df,2p) level, distances are given in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Å and |
| angles in degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24      |
| Figure S1. Potential energy curves for $XCH_2CH_2X$ molecules calculated at the M06-2X/6-311++G(3df,2p) level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25      |
| Figure S2. Potential energy curves for $XBH_2NH_2X$ molecules calculated at the M06-2X/6-311++G(3df,2p) level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26      |
| Figure S3. Potential energy curves for XCH <sub>2</sub> OX molecules calculated at the M06-2X/6-311++ $G(3df,2p)$ level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27      |
| Figure S4. Potential energy curves for XCH <sub>2</sub> SX molecules calculated at the M06-2X/6-311++ $G(3df,2p)$ level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28      |
| Figure S5. Potential energy curves for XOOX molecules calculated at the M06-2X/6-311++G(3df,2p) level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29      |
| Figure S6. Potential energy curves for XSSX molecules calculated at the M06-2X/6-311++G(3df,2p) level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30      |
| Figure S7. NBO deletion analysis calculated for $FCH_2CH_2F$ at the M06-2X/6-311++G(3df,2p) level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31      |
| Figure S8. NBO deletion analysis calculated for ClCH <sub>2</sub> CH <sub>2</sub> Cl at the M06-2X/6-311++G(3df,2p) level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32      |
| Figure S9. NBO deletion analysis calculated for BrCH <sub>2</sub> CH <sub>2</sub> Br at the M06-2X/6-311++G(3df,2p) level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33      |
| Figure S10. NBO deletion analysis calculated for FBH <sub>2</sub> NH <sub>2</sub> F at the M06-2X/6-311++G(3df,2p) level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34      |
| Figure S11. NBO deletion analysis calculated for ClBH <sub>2</sub> NH <sub>2</sub> Cl at the M06-2X/6-311++G(3df,2p) level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35      |

| Figure S12. NBO deletion analysis calculated for BrBH <sub>2</sub> NH <sub>2</sub> Br at the M06-2X/6-311++G(3df,2p) level.                             |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Figure S13. NBO deletion analysis calculated for FCH <sub>2</sub> OF at the M06-2X/6-311++G(3df,2p) level.                                              |                |
| Figure S14. NBO deletion analysis calculated for ClCH <sub>2</sub> OCl at the M06-2X/6-311++G(3df,2p) level.                                            |                |
| Figure S15. NBO deletion analysis calculated for BrCH <sub>2</sub> OBr at the M06-2X/6-311++G(3df,2p) level                                             |                |
| Figure S16. NBO deletion analysis calculated for FCH <sub>2</sub> SF at the M06-2X/6-311++G(3df,2p) level                                               | 40             |
| Figure S17. NBO deletion analysis calculated for ClCH <sub>2</sub> SCl at the M06-2X/6-311++G(3df,2p) level                                             | 41             |
| Figure S18. NBO deletion analysis calculated for BrCH <sub>2</sub> SBr at the M06-2X/6-311++G(3df,2p) level                                             | 42             |
| Figure S19. NBO deletion analysis calculated for FOOF at the M06-2X/6-311++G(3df,2p) level.                                                             | 43             |
| Figure S20. NBO deletion analysis calculated for ClOOCl at the M06-2X/6-311++G(3df,2p) level.                                                           | 44             |
| Figure S21. NBO deletion analysis calculated for BrOOBr at the M06-2X/6-311++G(3df,2p) level                                                            | 45             |
| Figure S22. NBO deletion analysis calculated for FSSF at the M06-2X/6-311++G(3df,2p) level                                                              | 46             |
| Figure S23. NBO deletion analysis calculated for CISSCI at the M06-2X/6-311++G(3df,2p) level.                                                           | 47             |
| Figure S24. NBO deletion analysis calculated for BrSSBr at the M06-2X/6-311++G(3df,2p) level                                                            |                |
| Figure S25. Hyperconjugation interaction energies for $FCH_2CH_2F$ obtained at the M06-2X/6-311++G(3df,2p) level using NBO a                            | nalysis.<br>49 |
| Figure S26. Hyperconjugation interaction energies for ClCH <sub>2</sub> CH <sub>2</sub> Cl obtained at the M06-2X/6-311++G(3df,2p) level usin analysis. | g NBO          |
| Figure S27. Hyperconjugation interaction energies for BrCH <sub>2</sub> CH <sub>2</sub> Br obtained at the M06-2X/6-311++G(3df,2p) level usin analysis. | g NBO          |

| Figure S28. Hyperconjugation interaction energies for $FBH_2NH_2F$ obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure S29. Hyperconjugation interaction energies for ClBH <sub>2</sub> NH <sub>2</sub> Cl obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis. |
| Figure S30. Hyperconjugation interaction energies for BrBH <sub>2</sub> NH <sub>2</sub> Br obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis. |
| Figure S31. Hyperconjugation interaction energies for FCH <sub>2</sub> OF obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.                  |
| Figure S32. Hyperconjugation interaction energies for $ClCH_2OCl$ obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis                           |
| Figure S33. Hyperconjugation interaction energies for $BrCH_2OBr$ obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.                          |
| Figure S34. Hyperconjugation interaction energies for FCH <sub>2</sub> SF obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.                  |
| Figure S35. Hyperconjugation interaction energies for ClCH <sub>2</sub> SCl obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.                |
| Figure S36. Hyperconjugation interaction energies for BrCH <sub>2</sub> SBr obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.                |
| Figure S37. Hyperconjugation interaction energies for FOOF obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis61                                |

| Figure S38. Hyperconjugation interaction energies for ClOOCl obtained at the M06-2X/6-311++ $G(3df,2p)$ level using NBO analysis.                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure S39. Hyperconjugation interaction energies for BrOOBr obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.                                                |
| Figure S40. Hyperconjugation interaction energies for FSSF obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis64                                                 |
| Figure S41. Hyperconjugation interaction energies for CISSCI obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.                                                |
| Figure S42. Hyperconjugation interaction energies for BrSSBr obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.                                                |
| Figure S43. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for FCH <sub>2</sub> CH <sub>2</sub> F calculated at the M06-2X/6-<br>311++G(3df,2p) level   |
| Figure S44. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for ClCH <sub>2</sub> CH <sub>2</sub> Cl calculated at the M06-2X/6-<br>311++G(3df,2p) level |
| Figure S45. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for BrCH <sub>2</sub> CH <sub>2</sub> Br calculated at the M06-2X/6-<br>311++G(3df,2p) level |
| Figure S46. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for FBH <sub>2</sub> NH <sub>2</sub> F calculated at the M06-2X/6-<br>311++G(3df,2p) level   |
| Figure S47. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for $ClBH_2NH_2Cl$ calculated at the M06-2X/6-<br>311++G(3df,2p) level                       |

| Figure S48. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for BrBH <sub>2</sub> NH <sub>2</sub> Br calculated at the M06-2X/6-<br>311++G(3df,2p) level |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure S49. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for FCH <sub>2</sub> OF calculated at the M06-2X/6-<br>311++G(3df,2p) level                  |
| Figure S50. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for ClCH <sub>2</sub> OCl calculated at the M06-2X/6-<br>311++G(3df,2p) level                |
| Figure S51. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for BrCH <sub>2</sub> OBr calculated at the M06-2X/6-<br>311++G(3df,2p) level                |
| Figure S52. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for $FCH_2SF$ calculated at the M06-2X/6-311++G(3df,2p) level                                |
| Figure S53. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for ClCH <sub>2</sub> SCl calculated at the M06-2X/6-<br>311++G(3df,2p) level                |
| Figure S54 Atomic charges and natural Coulomb electrostatic (NCE) energy curves for BrCH <sub>2</sub> SBr calculated at the M06-2X/6-<br>311++G(3df,2p) level                 |
| Figure S55. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for FOOF calculated at the M06-2X/6-<br>311++G(3df,2p) level                                 |
| Figure S56. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for ClOOCl calculated at the M06-2X/6-<br>311++G(3df,2p) level                               |
| Figure S57. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for BrOOBr calculated at the M06-2X/6-<br>311++G(3df,2p) level                               |

| Figure S58. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for FSSF calculated at the M06-2X/6-<br>311++G(3df,2p) level                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure S59. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for ClSSCl calculated at the M06-2X/6-<br>311++G(3df,2p) level                                                                                                                                                                                                                                                                                       |
| Figure S60. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for BrSSBr calculated at the M06-2X/6-<br>311++G(3df,2p) level                                                                                                                                                                                                                                                                                       |
| Figure S61. a) $\sigma_{CH} \rightarrow \sigma^*_{CF}$ and b) LP(2)F $\rightarrow \sigma^*_{CH}$ hyperconjugative interaction representations for the <i>gauche</i> and c) LP(2)F $\rightarrow \sigma^*_{CH}$ hyperconjugative interaction for the <i>anti</i> conformer of FCH <sub>2</sub> CH <sub>2</sub> F. All orbital isosurfaces were plotted with isovalues of 0.07 au85                                                      |
| Figure S62. a) $\sigma_{CF} \rightarrow \sigma^*_{CF}$ , b) $\sigma_{CCl} \rightarrow \sigma^*_{CCl}$ and c) $\sigma_{CBr} \rightarrow \sigma^*_{CBr}$ hyperconjugative interaction representations for the <i>anti</i> conformers of FCH <sub>2</sub> CH <sub>2</sub> F, ClCH <sub>2</sub> CH <sub>2</sub> Cl and BrCH <sub>2</sub> CH <sub>2</sub> Br, respectively. All orbital isosurfaces were plotted with isovalues of 0.07 au |
| Figure S63. a) LP(2)O $\rightarrow \sigma^*_{CF}$ b) $\sigma_{CH} \rightarrow \sigma^*_{OF}$ hyperconjugative interactions for the <i>gauche</i> conformer of FCH <sub>2</sub> OF and c) LP(2)O $\rightarrow \sigma^*_{OF}$ for the <i>gauche</i> conformer of FOOF. All orbital isosurfaces were plotted with isovalues of 0.07 a.u                                                                                                  |
| Figure S64. Number of remaining hyperconjugative interactions and the amplitude of the "Others" curve <i>versus</i> the cutoff value for the decomposition of hyperconjugative interactions and electrostatics interactions for XCH <sub>2</sub> CH <sub>2</sub> X molecules                                                                                                                                                          |
| Figure S65. Number of remaining hyperconjugative interactions and the amplitude of the "Others" curve <i>versus</i> the cutoff value for the decomposition of hyperconjugative interactions and electrostatics interactions for XBH <sub>2</sub> NH <sub>2</sub> X molecules                                                                                                                                                          |
| Figure S66. Number of remaining hyperconjugative interactions and the amplitude of the "Others" curve <i>versus</i> the cutoff value for the decomposition of hyperconjugative interactions and electrostatics interactions for XCH <sub>2</sub> OX molecules                                                                                                                                                                         |
| Figure S67. Number of remaining hyperconjugative interactions and the amplitude of the "Others" curve <i>versus</i> the cutoff value for the decomposition of hyperconjugative interactions and electrostatics interactions for XOOX molecules                                                                                                                                                                                        |



| Figure S70. NBO deletion analysis calculated for CF <sub>3</sub> OOCF <sub>3</sub> at the M06-2X/6-311++G(3df,2p) level                         | 94    |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Figure S71. Hyperconjugation interaction energies for $CF_3OOCF_3$ obtained at the M06-2X/6-311++G(3df,2p) level using NBO analy                | /sis. |
|                                                                                                                                                 | 95    |
| Figure S72. Atomic charges and natural Coulomb electrostatic (NCE) energy curves for CF <sub>3</sub> OOCF <sub>3</sub> calculated at the M06-2X | ۲/6-  |
| 311++G(3df,2p) level.                                                                                                                           | 96    |

#### **Computational Details**

All optimization, frequency and energy calculations were done using the Gaussian16 Rev C.01 software.<sup>24</sup> To determine the most accurate level of theory, the F-C-C-F dihedral angle was scanned from 0 to 180° in 10° increments in the M06-2X/6-311+G(d) level for **DFE.** On the obtained geometries, single point calculations were performed using several DFT functionals and *ab initio* methods as well as several basis sets. The energies of all resulting geometries from the scan calculations were then compared to that obtained from the CCSD(*T*)/CBS level of theory. The M06-2X/6-311++G(3df,2p) level the one that showed the lowest mean absolute deviations and was used in all further calculations. Natural Bond Orbitals analysis calculations were run at the M06-2X/6-311++G(3df,2p) level using the NBO 7.0 program.<sup>25</sup> Likewise, NBOdel analysis was done by excluding all Rydberg and non-Lewis orbitals. The Natural Coulomb Electrostatic analysis (NCE)<sup>10</sup> was carried out for the optimized geometries for the classical Coulomb

equation:  $E_{AB} = \frac{Q_A Q_B}{R_{AB}}$ , where  $(R_{AB})$  are the optimized interatomic distances and  $(Q_A, Q_B)$  are NPA atomic charges. The Natural Steric Analysis (NSA)<sup>21</sup> was done using the STERIC keyword in the NBO 7.0 software. All the individual hyperconjugative interactions were obtained setting the threshold for printing an interaction to 0.0 kcal mol<sup>-1</sup> in the NBO 7.0 program.

Table S1. Atomic Coordinates for the *gauche* and *anti* conformers of XCH<sub>2</sub>CH<sub>2</sub>X molecules obtained at the M06-2X/6-311++G(3df,2p) level.

|            | gauche |         |         |         |    | anti    |         |         |  |
|------------|--------|---------|---------|---------|----|---------|---------|---------|--|
|            | С      | -0.2641 | 0.70313 | -0.5121 | С  | 0.42346 | -0.6274 | -8E-06  |  |
|            | Н      | 0.02156 | 1.20849 | -1.4374 | Н  | 1.05097 | -0.6713 | -0.8909 |  |
|            | Н      | -1.3506 | 0.70298 | -0.4109 | Н  | 1.05046 | -0.6724 | 0.89107 |  |
|            | С      | 0.26414 | -0.7031 | -0.5121 | С  | -0.4235 | 0.62735 | -8E-06  |  |
|            | Н      | -0.0216 | -1.2085 | -1.4374 | Н  | -1.051  | 0.67131 | -0.8909 |  |
|            | Н      | 1.35063 | -0.703  | -0.4109 | Н  | -1.0505 | 0.67237 | 0.89107 |  |
|            | F      | -0.2641 | -1.4052 | 0.54677 | F  | 0.42346 | 1.71347 | -1E-05  |  |
|            | F      | 0.26414 | 1.40521 | 0.54677 | F  | -0.4235 | -1.7135 | -1E-05  |  |
|            | С      | 0.64737 | 0.88604 | 0.38762 | С  | 0.4892  | 0.57607 | -3E-05  |  |
|            | Н      | 0.46602 | 0.8037  | 1.45567 | Н  | 0.37421 | 1.19087 | 0.88797 |  |
|            | Н      | 1.19405 | 1.80352 | 0.17872 | Н  | 0.37416 | 1.18995 | -0.8886 |  |
|            | С      | -0.6473 | 0.88609 | -0.3876 | С  | -0.489  | -0.5759 | 2.9E-05 |  |
|            | Н      | -1.1939 | 1.8036  | -0.1787 | Н  | -0.3738 | -1.1907 | -0.8879 |  |
|            | Н      | -0.4659 | 0.80377 | -1.4556 | Н  | -0.3738 | -1.1896 | 0.88862 |  |
|            | Cl     | -1.7049 | -0.4661 | 0.08271 | Cl | -2.1521 | 0.07049 | -1E-05  |  |
|            | Cl     | 1.70485 | -0.4661 | -0.0827 | Cl | 2.15197 | -0.0706 | 5E-06   |  |
|            | С      | 0.6315  | 1.17723 | 0.41451 | С  | 0.46003 | 0.59638 | -2E-06  |  |
|            | Н      | 0.41738 | 1.09259 | 1.47544 | Н  | 0.33902 | 1.20488 | 0.88972 |  |
|            | Н      | 1.19616 | 2.08646 | 0.22127 | Н  | 0.33876 | 1.20438 | -0.89   |  |
| BrCH_CH_Br | С      | -0.6279 | 1.1776  | -0.4144 | С  | -0.4601 | -0.5963 | 1.3E-05 |  |
|            | Н      | -1.1939 | 2.08577 | -0.2224 | Н  | -0.3386 | -1.2045 | -0.8898 |  |
|            | Н      | -0.4163 | 1.09142 | -1.4754 | Н  | -0.3388 | -1.2046 | 0.88983 |  |
|            | Br     | -1.8141 | -0.2923 | 0.03854 | Br | -2.3068 | 0.03049 | 3E-06   |  |
|            | Br     | 1.81334 | -0.293  | -0.0385 | Br | 2.30681 | -0.0305 | 3E-06   |  |

Table S2. Atomic Coordinates for the *gauche* and *anti* conformers of XBH<sub>2</sub>NH<sub>2</sub>X molecules obtained at the M06-2X/6-311++G(3df,2p) level.

|                | gauche |         |         |         |    |         | anti    |         |
|----------------|--------|---------|---------|---------|----|---------|---------|---------|
|                | В      | -0.8479 | 0.5436  | -0.3533 | В  | -0.7293 | 0.66927 | -2E-05  |
|                | Н      | -1.2061 | 1.60125 | 0.12499 | Н  | -0.5954 | 1.28378 | 1.02241 |
|                | Н      | -0.6801 | 0.55065 | -1.5425 | Н  | -0.5954 | 1.28355 | -1.0225 |
|                | Ν      | 0.65542 | 0.48265 | 0.28934 | Ν  | 0.53769 | -0.4197 | 3E-06   |
| FDH2INH2F      | Н      | 0.60414 | 0.31504 | 1.2958  | Н  | 0.5041  | -1.0124 | -0.8303 |
|                | Н      | 1.17212 | 1.34333 | 0.10971 | Н  | 0.50391 | -1.012  | 0.83062 |
|                | F      | 1.45936 | -0.5315 | -0.1887 | F  | 1.78097 | 0.15261 | -9E-06  |
|                | F      | -1.4859 | -0.5692 | 0.16128 | F  | -1.7737 | -0.2583 | 1E-06   |
|                | В      | 0.73555 | 0.98046 | 0.45134 | В  | 0.5675  | 0.82227 | 0.00111 |
|                | Н      | 0.44759 | 0.97157 | 1.60748 | Н  | 0.38429 | 1.4116  | 1.01989 |
|                | Н      | 1.16211 | 2.01533 | 0.01778 | Н  | 0.38226 | 1.41179 | -1.0172 |
|                | Ν      | -0.6581 | 0.82792 | -0.3782 | Ν  | -0.4799 | -0.4312 | 0.00186 |
|                | Н      | -0.4414 | 0.67448 | -1.3632 | Н  | -0.3182 | -1.01   | 0.826   |
|                | Н      | -1.2064 | 1.68237 | -0.2914 | Н  | -0.3162 | -1.012  | -0.8204 |
|                | Cl     | -1.6931 | -0.4755 | 0.0996  | Cl | -2.1487 | 0.01894 | -0.0008 |
|                | Cl     | 1.75    | -0.4681 | -0.0749 | Cl | 2.17156 | -0.1304 | -0.0007 |
|                | В      | 0.68826 | 1.28326 | 0.48548 | В  | 0.51355 | 0.89428 | 0.00128 |
|                | Н      | 0.37167 | 1.25604 | 1.63123 | Н  | 0.33362 | 1.47661 | 1.02194 |
|                | Н      | 1.15363 | 2.30713 | 0.07389 | Н  | 0.33197 | 1.47569 | -1.0191 |
| BrBH_NH_Br     | Ν      | -0.6534 | 1.12397 | -0.4039 | Ν  | -0.4526 | -0.4016 | 0.00252 |
| וטברואוברוס וס | Н      | -0.3973 | 0.97591 | -1.3802 | Н  | -0.2719 | -0.9756 | 0.8253  |
|                | Н      | -1.2144 | 1.97192 | -0.3396 | Н  | -0.27   | -0.9784 | -0.8179 |
|                | Br     | -1.808  | -0.3029 | 0.04645 | Br | -2.3037 | -0.0067 | -0.0005 |
|                | Br     | 1.84286 | -0.2913 | -0.0346 | Br | 2.3173  | -0.0693 | -0.0005 |

# Table S3. Atomic Coordinates for the *gauche* and *anti* conformers of XCH<sub>2</sub>OX molecules obtained at the M06-2X/<u>6-311++G(3df,2p)</u> level.

|                     |    |         | gauche  | anti    |    |         |         |         |
|---------------------|----|---------|---------|---------|----|---------|---------|---------|
|                     | 0  | -0.6073 | 0.58732 | -0.3521 | 0  | -0.4634 | -0.5711 | 0.00036 |
|                     | С  | 0.61104 | 0.49803 | 0.2875  | С  | 0.49286 | 0.47659 | 0.0003  |
|                     | Н  | 0.47768 | 0.39622 | 1.36448 | Н  | 0.38842 | 1.07041 | 0.90892 |
| FCH <sub>2</sub> OF | Н  | 1.11373 | 1.42457 | 0.00487 | Н  | 0.38791 | 1.071   | -0.9078 |
|                     | F  | 1.32053 | -0.5679 | -0.1572 | F  | 1.6725  | -0.1687 | -0.0003 |
|                     | F  | -1.3649 | -0.4885 | 0.12643 | F  | -1.6754 | 0.12063 | -0.0003 |
|                     | 0  | -0.6392 | 0.83731 | -0.4185 | 0  | -0.4469 | -0.5343 | 0.00115 |
|                     | С  | 0.54181 | 0.89842 | 0.30664 | С  | 0.42919 | 0.57275 | 0.00071 |
|                     | Н  | 0.36192 | 0.87542 | 1.37883 | Н  | 0.29921 | 1.16917 | 0.90182 |
|                     | Н  | 1.02057 | 1.82031 | -0.0108 | Н  | 0.29805 | 1.1695  | -0.9    |
|                     | Cl | 1.65403 | -0.4457 | -0.0609 | Cl | 2.05271 | -0.1027 | -0.0004 |
|                     | Cl | -1.6258 | -0.424  | 0.06917 | Cl | -2.029  | 0.01445 | -0.0005 |
|                     | 0  | -0.6481 | 1.09948 | -0.4362 | 0  | -0.4334 | -0.5108 | 0.00152 |
|                     | С  | 0.50197 | 1.1789  | 0.31959 | С  | 0.39579 | 0.62035 | 0.00088 |
|                     | Н  | 0.31245 | 1.1487  | 1.38929 | Н  | 0.27037 | 1.21586 | 0.90234 |
| BICH20BI            | Н  | 0.99831 | 2.09454 | 0.01227 | Н  | 0.26926 | 1.21577 | -0.9004 |
|                     | Br | 1.77106 | -0.2736 | -0.0274 | Br | 2.20242 | -0.0548 | -0.0003 |
|                     | Br | -1.7464 | -0.2725 | 0.03227 | Br | -2.1866 | -0.0042 | -0.0003 |

Table S4. Atomic Coordinates for the *gauche* and *anti* conformers of XCH<sub>2</sub>SX molecules molecules obtained at the M06-2X/6-311++G(3df,2p) level.

|                       |    |         | gauche  | anti    |    |         |         |         |
|-----------------------|----|---------|---------|---------|----|---------|---------|---------|
|                       | S  | 0.68524 | -0.58   | -0.1841 | S  | 0.53684 | -0.6    | -0.0002 |
|                       | С  | -0.9131 | -0.2579 | 0.4906  | С  | -0.8134 | 0.61227 | -0.0005 |
|                       | Н  | -0.8018 | 0.29366 | 1.42364 | Н  | -0.7673 | 1.22258 | -0.9006 |
| гсп <sub>2</sub> зг   | Н  | -1.3565 | -1.2396 | 0.6731  | Н  | -0.7662 | 1.22375 | 0.89874 |
|                       | F  | -1.7349 | 0.45065 | -0.3448 | F  | -1.9637 | -0.1213 | 0.00052 |
|                       | F  | 1.36523 | 0.85751 | 0.11211 | F  | 1.72204 | 0.50804 | 0.00039 |
|                       | S  | -0.7067 | 0.9806  | -0.2737 | S  | -0.4379 | 0.73912 | -0.0009 |
|                       | С  | 0.82574 | 0.69038 | 0.58897 | С  | 0.66804 | -0.6881 | -0.0022 |
| CICH <sub>2</sub> SCI | Н  | 0.63036 | 0.36472 | 1.60557 | Н  | 0.5293  | -1.2798 | -0.9013 |
|                       | Н  | 1.335   | 1.65266 | 0.5914  | Н  | 0.52693 | -1.283  | 0.89452 |
|                       | Cl | 1.89885 | -0.5088 | -0.1667 | Cl | 2.3089  | -0.0258 | 0.00107 |
|                       | Cl | -1.6407 | -0.7764 | 0.0872  | Cl | -2.1946 | -0.2762 | 0.0009  |
|                       | S  | -0.6991 | 1.33471 | -0.3051 | S  | -0.4106 | 0.81874 | -0.0012 |
|                       | С  | 0.77195 | 1.00722 | 0.63994 | С  | 0.60432 | -0.6665 | -0.0029 |
| BrCH <sub>2</sub> SBr | Н  | 0.53176 | 0.71096 | 1.65456 | Н  | 0.45382 | -1.2512 | -0.9036 |
|                       | н  | 1.32668 | 1.94281 | 0.63631 | Н  | 0.45147 | -1.2549 | 0.895   |
|                       | Br | 1.95591 | -0.3588 | -0.0785 | Br | 2.43425 | -0.04   | 0.00068 |
|                       | Br | -1.8218 | -0.4998 | 0.04281 | Br | -2.376  | -0.1484 | 0.00059 |

Table S5. Atomic Coordinates for the *gauche* and *anti* conformers of XOOX molecules obtained at the M06-2X/6-311++G(3df,2p) level.

|               |    |         | gauche  | anti    |    |         |         |         |  |  |
|---------------|----|---------|---------|---------|----|---------|---------|---------|--|--|
|               | 0  | -0.2948 | -0.5734 | 0.54923 | 0  | -0.452  | -0.5557 | 0       |  |  |
| FOOF          | 0  | 0.29478 | 0.57339 | 0.54923 | 0  | 0.45196 | 0.55566 | 0       |  |  |
| FUUF          | F  | 0.29478 | -1.3305 | -0.4882 | F  | 0.45196 | -1.5822 | 0       |  |  |
|               | F  | -0.2948 | 1.33054 | -0.4882 | F  | -0.452  | 1.58215 | 0       |  |  |
|               | 0  | 0.55386 | 0.82551 | 0.40996 | 0  | 0.43851 | -0.5785 | -0.0004 |  |  |
|               | 0  | -0.5539 | 0.82552 | -0.41   | 0  | -0.4385 | 0.57845 | -0.0004 |  |  |
| CIOOCI        | Cl | 1.62461 | -0.3885 | -0.0658 | Cl | 1.96601 | 0.06072 | 0.00018 |  |  |
|               | Cl | -1.6246 | -0.3885 | 0.06577 | Cl | -1.966  | -0.0607 | 0.00018 |  |  |
|               | 0  | 0.53594 | 1.07271 | 0.42555 | 0  | 0.41168 | -0.5926 | -0.0005 |  |  |
| <b>PrOOPr</b> | 0  | -0.5359 | 1.07271 | -0.4255 | 0  | -0.4117 | 0.59261 | -0.0005 |  |  |
| DIUUDI        | Br | 1.74194 | -0.2452 | -0.0299 | Br | 2.11199 | 0.0264  | 0.00012 |  |  |
|               | Br | -1.7419 | -0.2452 | 0.02993 | Br | -2.112  | -0.0264 | 0.00012 |  |  |

Table S6. Atomic Coordinates for the *gauche* and *anti* conformers of XSSX molecules obtained at the M06-2X/6-311++G(3df,2p) level.

|      |   |         | gauche  |         |   | anti    |         |         |  |  |
|------|---|---------|---------|---------|---|---------|---------|---------|--|--|
| FSSF | S | -0.8143 | 0.67388 | -0.0003 | S | -0.8529 | -0.3951 | 0.41739 |  |  |

|        | S  | 0.81434 | -0.6739 | -0.0003 | S  | 0.85288 | -0.3952 | -0.4174 |
|--------|----|---------|---------|---------|----|---------|---------|---------|
|        | F  | -1.9096 | -0.5109 | 0.00061 | F  | -1.769  | 0.70249 | -0.3578 |
|        | F  | 1.90963 | 0.51089 | 0.00061 | F  | 1.76902 | 0.7025  | 0.35774 |
|        | S  | -0.8196 | -0.776  | 0.53356 | S  | 0.00012 | -1.0519 | 0       |
|        | S  | 0.82016 | -0.775  | -0.5339 | S  | 0       | 1.05163 | 0       |
| 05501  | Cl | -1.999  | 0.72984 | -0.2059 | Cl | -2.0077 | -1.2413 | 0       |
|        | Cl | 1.99843 | 0.72987 | 0.20622 | Cl | 2.00758 | 1.2416  | 0       |
|        | S  | 0.78124 | 1.11286 | 0.59081 | S  | 0       | 1.04974 | 0       |
| BrSSBr | S  | -0.7811 | 1.11273 | -0.5909 | S  | -5E-06  | -1.05   | 0       |
| RL22RL | Br | 2.12416 | -0.5087 | -0.0993 | Br | 2.16626 | 1.25868 | 0       |
|        | Br | -2.1242 | -0.5087 | 0.09934 | Br | -2.1663 | -1.2585 | 0       |

## Table S7. Benchmarking study of methods/functionals (left) and basis sets (right) with respect to the CCSD(T)/CBS level. Mean absolute deviations are given in kcal mol<sup>-1</sup>

| Method               | MAD    | Basis set               | MAD    |
|----------------------|--------|-------------------------|--------|
| B3LYP/aug-cc-pVTZ    | 0.1035 | M06-2X/6-311++G(3df,2p) | 0.0314 |
| B3LYP-D3/aug-cc-pVTZ | 0.1040 | M06-2X/cc-pVDZ          | 0.2242 |
| M06/aug-cc-pVTZ      | 0.1240 | M06-2X/cc-pVTZ          | 0.0391 |
| M06L/aug-cc-pVTZ     | 0.2407 | M06-2X/cc-pVQZ          | 0.0149 |
| M06-2X/aug-cc-pVTZ   | 0.0566 | M06-2X/cc-pV5Z          | 0.0050 |
| M11/aug-cc-pVTZ      | 0.1856 | M06-2X/aug-cc-pVDZ      | 0.0640 |
| MP2/aug-cc-pVTZ      | 0.1691 | M06-2X/aug-cc-pVTZ      | 0.0633 |
| MP3/aug-cc-pVTZ      | 0.0169 | M06-2X/aug-cc-pVQZ      | 0.0149 |
| MP4(SDQ)/aug-cc-pVTZ | 0.0182 | -                       | -      |
| CCSD(T)/CBS          | 0.0000 | CCSD(T)/CBS             | 0.0000 |

Table S8. Geometrical parameters of the XCH<sub>2</sub>CH<sub>2</sub>X systems obtained in the M06-2X/6-311++G(3df,2p) level, distances are given in Å and angles in degrees.

|              |       | F <sub>8</sub>        | H <sub>6</sub>                   | 7     |       | Cl <sub>8</sub>                                                   |                                  |       |       | Br <sub>8</sub>                  | H <sub>6</sub><br>₹ ⊿Bi | <b>^</b> 7 |
|--------------|-------|-----------------------|----------------------------------|-------|-------|-------------------------------------------------------------------|----------------------------------|-------|-------|----------------------------------|-------------------------|------------|
|              |       | $H_2^{(1)} H_3^{(1)}$ | Ċ <sub>4</sub><br>H <sub>5</sub> | 7     |       | H <sub>3</sub> <sup>11</sup> , C <sub>1</sub> -<br>H <sub>2</sub> | C <sub>4</sub><br>H <sub>5</sub> |       | F     | H₂``` <b>↓</b><br>H <sub>3</sub> | Ċ4<br>H <sub>5</sub>    | 1          |
| Parameter    | syn   | gauche                | anticlinal                       | anti  | syn   | gauche                                                            | anticlinal                       | anti  | syn   | gauche                           | anticlinal              | anti       |
| $\Phi^{[a]}$ | 0     | 70                    | 120                              | 180   | 0     | 70                                                                | 120                              | 180   | 0     | 70                               | 120                     | 180        |
| r (1-2)      | 1.091 | 1.092                 | 1.090                            | 1.091 | 1.086 | 1.086                                                             | 1.085                            | 1.086 | 1.085 | 1.086                            | 1.083                   | 1.085      |
| r (1-3)      | 1.091 | 1.091                 | 1.090                            | 1.090 | 1.086 | 1.088                                                             | 1.086                            | 1.086 | 1.085 | 1.088                            | 1.085                   | 1.085      |
| r (1-4)      | 1.546 | 1.502                 | 1.522                            | 1.514 | 1.545 | 1.509                                                             | 1.528                            | 1.511 | 1.539 | 1.508                            | 1.525                   | 1.506      |
| r (1-8)      | 1.369 | 1.376                 | 1.380                            | 1.377 | 1.775 | 1.780                                                             | 1.785                            | 1.784 | 1.938 | 1.940                            | 1.948                   | 1.950      |
| r (4-5)      | 1.091 | 1.092                 | 1.090                            | 1.091 | 1.086 | 1.088                                                             | 1.086                            | 1.086 | 1.084 | 1.087                            | 1.085                   | 1.085      |
| r (4-6)      | 1.091 | 1.091                 | 1.090                            | 1.090 | 1.086 | 1.086                                                             | 1.085                            | 1.086 | 1.084 | 1.085                            | 1.083                   | 1.085      |
| r (4-7)      | 1.369 | 1.376                 | 1.380                            | 1.377 | 1.774 | 1.780                                                             | 1.785                            | 1.784 | 1.938 | 1.942                            | 1.949                   | 1.950      |
| ∠ (2-1-3)    | 109.0 | 109.8                 | 109.7                            | 109.6 | 108.7 | 109.7                                                             | 109.3                            | 109.7 | 109.0 | 110.0                            | 109.6                   | 110.3      |
| ∠ (2-1-4)    | 110.8 | 109.9                 | 112.2                            | 110.8 | 109.5 | 111.2                                                             | 111.1                            | 111.3 | 109.8 | 111.9                            | 112.3                   | 112.1      |
| ∠ (2-1-8)    | 107.9 | 108.4                 | 107.2                            | 108.8 | 106.1 | 107.5                                                             | 106.8                            | 107.7 | 104.8 | 106.8                            | 105.6                   | 106.6      |
| ∠ (3-1-4)    | 110.8 | 110.5                 | 109.1                            | 110.8 | 109.5 | 109.4                                                             | 111.2                            | 111.2 | 109.8 | 109.6                            | 111.5                   | 112.1      |
| ∠ (3-1-8)    | 107.9 | 108.1                 | 108.5                            | 108.7 | 106.1 | 106.9                                                             | 106.6                            | 107.7 | 104.8 | 106.0                            | 105.8                   | 106.6      |
| ∠ (4-1-8)    | 110.5 | 110.0                 | 110.1                            | 108.0 | 116.5 | 112.0                                                             | 111.7                            | 109.1 | 118.2 | 112.4                            | 111.8                   | 108.9      |
| ∠ (1-4-5)    | 110.8 | 109.9                 | 112.2                            | 110.8 | 109.6 | 109.4                                                             | 111.2                            | 111.3 | 109.8 | 109.8                            | 111.5                   | 112.1      |
| ∠ (1-4-6)    | 110.8 | 110.5                 | 109.1                            | 110.8 | 109.6 | 111.2                                                             | 111.1                            | 111.2 | 109.8 | 112.0                            | 112.3                   | 112.1      |
| ∠ (1-4-7)    | 110.5 | 110.0                 | 110.1                            | 108.0 | 116.5 | 112.0                                                             | 111.7                            | 109.1 | 118.2 | 112.4                            | 111.8                   | 108.9      |
| ∠ (5-4-6)    | 109.0 | 109.8                 | 109.7                            | 109.6 | 108.7 | 109.7                                                             | 109.3                            | 109.7 | 108.9 | 109.9                            | 109.5                   | 110.2      |
| ∠ (5-4-7)    | 107.9 | 108.4                 | 107.2                            | 108.8 | 106.1 | 106.9                                                             | 106.6                            | 107.7 | 104.8 | 105.8                            | 105.8                   | 106.6      |
| ∠ (6-4-7)    | 107.9 | 108.1                 | 108.5                            | 108.7 | 106.1 | 107.5                                                             | 106.8                            | 107.7 | 104.8 | 106.7                            | 105.5                   | 106.6      |

Table S9. Geometrical parameters of the XBH<sub>2</sub>NH<sub>2</sub>X systems obtained in the M06-2X/6-311++G(3df,2p) level, distances are given in Å and angles in degrees.

|           |       |                |             |       | Cl <sub>8</sub> |          |            | Br <sub>8</sub> H <sub>6</sub> Br |       |                |            |       |
|-----------|-------|----------------|-------------|-------|-----------------|----------|------------|-----------------------------------|-------|----------------|------------|-------|
|           |       | \<br>B         | N           | 7     |                 | \<br>B،— |            | 7                                 |       | \<br>B.—       | N          | 7     |
|           | Н     | 3 <sup>1</sup> | \<br>\<br>\ |       | Н               | 3'``     |            |                                   | F     | l3``` <b>/</b> |            |       |
|           |       | H <sub>2</sub> | <b>H</b> 5  |       |                 | $H_2$    | <b>n</b> 5 |                                   | 1     | $H_2$          | п5         |       |
| Parameter | syn   | gauche         | anticlinal  | anti  | syn             | gauche   | anticlinal | anti                              | syn   | gauche         | anticlinal | anti  |
| φ         | 0     | 70             | 120         | 180   | 0               | 70       | 120        | 180                               | 0     | 70             | 120        | 180   |
| r (1-2)   | 1.205 | 1.215          | 1.204       | 1.200 | 1.195           | 1.191    | 1.188      | 1.191                             | 1.193 | 1.189          | 1.186      | 1.189 |
| r (1-3)   | 1.205 | 1.201          | 1.198       | 1.200 | 1.195           | 1.200    | 1.194      | 1.191                             | 1.193 | 1.198          | 1.191      | 1.188 |
| r (1-4)   | 1.741 | 1.636          | 1.685       | 1.671 | 1.702           | 1.629    | 1.665      | 1.633                             | 1.679 | 1.618          | 1.650      | 1.616 |
| r (1-8)   | 1.370 | 1.382          | 1.392       | 1.397 | 1.827           | 1.845    | 1.860      | 1.866                             | 2.001 | 2.021          | 2.037      | 2.045 |
| r (4-5)   | 1.019 | 1.022          | 1.022       | 1.021 | 1.017           | 1.020    | 1.021      | 1.020                             | 1.017 | 1.020          | 1.021      | 1.019 |
| r (4-6)   | 1.019 | 1.020          | 1.019       | 1.021 | 1.017           | 1.019    | 1.018      | 1.020                             | 1.017 | 1.019          | 1.018      | 1.019 |
| r (4-7)   | 1.371 | 1.380          | 1.375       | 1.369 | 1.725           | 1.732    | 1.727      | 1.728                             | 1.888 | 1.890          | 1.887      | 1.893 |
| ∠ (2-1-3) | 116.0 | 115.2          | 116.8       | 116.8 | 116.2           | 116.3    | 117.1      | 117.5                             | 116.8 | 117.0          | 117.7      | 118.3 |
| ∠ (2-1-4) | 101.6 | 98.6           | 103.2       | 104.4 | 102.3           | 106.7    | 106.9      | 106.3                             | 103.2 | 107.9          | 108.3      | 107.6 |
| ∠ (2-1-8) | 115.5 | 114.7          | 113.6       | 115.0 | 112.7           | 113.8    | 112.7      | 112.7                             | 111.1 | 112.5          | 111.1      | 111.4 |
| ∠ (3-1-4) | 101.6 | 105.1          | 103.7       | 104.4 | 102.3           | 101.6    | 104.5      | 106.3                             | 103.2 | 102.6          | 105.5      | 107.6 |
| ∠ (3-1-8) | 115.5 | 116.0          | 115.8       | 115.0 | 112.8           | 112.2    | 111.8      | 112.7                             | 111.2 | 110.8          | 110.8      | 111.4 |
| ∠ (4-1-8) | 103.5 | 104.4          | 100.8       | 97.7  | 109.1           | 104.6    | 102.3      | 99.2                              | 110.7 | 104.8          | 102.2      | 98.6  |
| ∠ (1-4-5) | 111.7 | 110.3          | 107.3       | 110.7 | 107.7           | 108.9    | 107.3      | 109.5                             | 107.7 | 109.4          | 108.1      | 110.2 |
| ∠ (1-4-6) | 111.7 | 111.4          | 113.6       | 110.7 | 107.7           | 109.8    | 110.4      | 109.5                             | 107.7 | 109.9          | 110.7      | 110.2 |
| ∠ (1-4-7) | 114.1 | 115.3          | 115.9       | 114.6 | 121.3           | 116.2    | 117.2      | 114.8                             | 123.4 | 116.7          | 117.2      | 114.7 |
| ∠ (5-4-6) | 109.1 | 109.7          | 109.6       | 108.9 | 107.8           | 108.8    | 108.4      | 107.6                             | 107.4 | 108.6          | 108.2      | 107.4 |
| ∠ (5-4-7) | 104.9 | 104.5          | 105.6       | 105.8 | 105.9           | 106.3    | 106.8      | 107.6                             | 104.9 | 105.8          | 106.1      | 107.0 |
| ∠ (6-4-7) | 104.9 | 105.3          | 104.6       | 105.8 | 105.9           | 106.6    | 106.5      | 107.6                             | 104.9 | 106.1          | 106.1      | 107.0 |

Table S10. Geometrical parameters of the XCH<sub>2</sub>OX systems obtained in the M06-2X/6-311++G(3df,2p) level, distances are given in Å and angles in degrees.



| Parameter | syn   | gauche | anticlinal | anti  | syn   | gauche | anticlinal | anti  | syn   | gauche | anticlinal | anti  |
|-----------|-------|--------|------------|-------|-------|--------|------------|-------|-------|--------|------------|-------|
| ф         | 0     | 80     | 120        | 180   | 0     | 80     | 120        | 180   | 0     | 80     | 120        | 180   |
| r (1-2)   | 1.439 | 1.377  | 1.399      | 1.418 | 1.422 | 1.387  | 1.402      | 1.412 | 1.408 | 1.378  | 1.392      | 1.403 |
| r (1-6)   | 1.387 | 1.401  | 1.398      | 1.396 | 1.661 | 1.674  | 1.671      | 1.675 | 1.806 | 1.819  | 1.817      | 1.825 |
| r (2-3)   | 1.091 | 1.089  | 1.087      | 1.090 | 1.087 | 1.087  | 1.085      | 1.088 | 1.086 | 1.087  | 1.084      | 1.088 |
| r (2-4)   | 1.091 | 1.091  | 1.091      | 1.090 | 1.087 | 1.086  | 1.087      | 1.088 | 1.086 | 1.086  | 1.086      | 1.088 |
| r (2-5)   | 1.339 | 1.358  | 1.356      | 1.345 | 1.763 | 1.783  | 1.777      | 1.758 | 1.937 | 1.960  | 1.952      | 1.929 |
| ∠ (2-1-6) | 108.5 | 106.1  | 106.9      | 102.7 | 119.4 | 112.5  | 113.5      | 109.2 | 122.4 | 114.0  | 114.6      | 110.1 |
| ∠ (1-2-3) | 106.9 | 110.8  | 109.4      | 109.7 | 107.0 | 111.9  | 112.1      | 110.8 | 107.8 | 113.1  | 113.6      | 111.9 |
| ∠ (1-2-4) | 106.9 | 103.7  | 107.9      | 109.7 | 107.0 | 105.1  | 108.3      | 110.8 | 107.8 | 105.9  | 109.0      | 111.9 |
| ∠ (1-2-5) | 111.6 | 111.2  | 108.7      | 103.7 | 117.0 | 113.0  | 109.7      | 105.8 | 118.5 | 113.6  | 109.8      | 105.8 |
| ∠ (3-2-4) | 112.6 | 113.0  | 112.9      | 112.8 | 111.8 | 112.3  | 111.8      | 111.7 | 112.0 | 112.4  | 111.9      | 111.9 |
| ∠ (3-2-5) | 109.4 | 109.0  | 110.6      | 110.2 | 107.1 | 106.9  | 108.1      | 108.7 | 105.4 | 105.5  | 106.7      | 107.5 |
| ∠ (4-2-5) | 109.4 | 109.1  | 107.3      | 110.2 | 107.1 | 107.7  | 106.7      | 108.7 | 105.4 | 106.2  | 105.4      | 107.5 |

Table S11. Geometrical parameters of the XCH<sub>2</sub>SX systems obtained in the M06-2X/6-311++G(3df,2p) level, distances are given in Å and angles in degrees.



| Parameter | syn   | gauche | anticlinal | anti  | syn   | gauche | anticlinal | anti  | syn   | gauche | anticlinal | anti  |
|-----------|-------|--------|------------|-------|-------|--------|------------|-------|-------|--------|------------|-------|
| ф         | 0     | 80     | 120        | 180   | 0     | 80     | 120        | 180   | 0     | 80     | 120        | 180   |
| r (1-2)   | 1.850 | 1.765  | 1.792      | 1.815 | 1.846 | 1.782  | 1.805      | 1.806 | 1.837 | 1.779  | 1.802      | 1.799 |
| r (1-6)   | 1.610 | 1.618  | 1.622      | 1.623 | 2.011 | 2.022  | 2.027      | 2.029 | 2.172 | 2.179  | 2.185      | 2.191 |
| r (2-3)   | 1.088 | 1.090  | 1.090      | 1.088 | 1.085 | 1.085  | 1.084      | 1.085 | 1.084 | 1.084  | 1.083      | 1.084 |
| r (2-4)   | 1.088 | 1.093  | 1.089      | 1.088 | 1.085 | 1.089  | 1.085      | 1.085 | 1.084 | 1.088  | 1.084      | 1.084 |
| r (2-5)   | 1.354 | 1.369  | 1.369      | 1.364 | 1.755 | 1.778  | 1.778      | 1.769 | 1.919 | 1.945  | 1.945      | 1.934 |
| ∠ (2-1-6) | 97.9  | 98.5   | 98.2       | 95.0  | 105.1 | 99.7   | 100.6      | 97.7  | 107.3 | 100.7  | 101.2      | 98.1  |
| ∠ (1-2-3) | 108.8 | 109.1  | 106.0      | 110.1 | 106.8 | 110.3  | 108.6      | 110.7 | 106.9 | 111.4  | 109.8      | 111.6 |
| ∠ (1-2-4) | 108.8 | 105.5  | 110.2      | 110.1 | 106.7 | 105.0  | 109.0      | 110.7 | 106.9 | 105.2  | 109.5      | 111.6 |
| ∠ (1-2-5) | 109.4 | 113.9  | 111.8      | 105.6 | 116.7 | 115.0  | 112.8      | 105.8 | 118.7 | 115.9  | 112.9      | 105.4 |
| ∠ (3-2-4) | 111.3 | 110.7  | 111.0      | 111.5 | 110.8 | 110.3  | 110.5      | 111.7 | 111.0 | 110.6  | 110.9      | 112.1 |
| ∠ (3-2-5) | 109.2 | 108.8  | 110.7      | 109.7 | 107.9 | 107.7  | 109.0      | 108.9 | 106.7 | 106.8  | 107.7      | 107.9 |
| ∠ (4-2-5) | 109.3 | 108.9  | 107.2      | 109.8 | 107.9 | 108.3  | 107.0      | 108.9 | 106.7 | 107.0  | 106.1      | 107.9 |

Table S12. Geometrical parameters of the XOOX systems obtained in the M06-2X/6-311++G(3df,2p) level, distances are given in Å and angles in degrees.



| Parameter | syn   | gauche | anticlinal | anti  | syn   | gauche | anticlinal | anti  | syn   | gauche | anticlinal | anti  |
|-----------|-------|--------|------------|-------|-------|--------|------------|-------|-------|--------|------------|-------|
| ф         | 0     | 90     | 120        | 180   | 0     | 90     | 120        | 180   | 0     | 90     | 120        | 180   |
| r (1-2)   | 1.455 | 1.287  | 1.329      | 1.433 | 1.473 | 1.378  | 1.406      | 1.452 | 1.448 | 1.369  | 1.396      | 1.443 |
| r (1-3)   | 1.362 | 1.415  | 1.400      | 1.368 | 1.646 | 1.688  | 1.674      | 1.656 | 1.802 | 1.844  | 1.829      | 1.809 |
| r (2-4)   | 1.362 | 1.415  | 1.400      | 1.368 | 1.646 | 1.688  | 1.674      | 1.656 | 1.802 | 1.844  | 1.829      | 1.809 |
| ∠ (2-1-3) | 108.2 | 106.6  | 104.9      | 99.5  | 116.3 | 109.5  | 107.8      | 104.5 | 118.9 | 110.3  | 108.6      | 104.8 |
| ∠ (1-2-4) | 108.2 | 106.6  | 104.9      | 99.5  | 116.3 | 109.5  | 107.8      | 104.5 | 118.9 | 110.3  | 108.6      | 104.8 |

Table S13. Geometrical parameters of the XSSX systems obtained in the M06-2X/6-311++G(3df,2p) level, distances are given in Å and angles in degrees.



| Paramet  | er <i>syn</i> | gauche | anticlinal | anti  | syn   | gauche | anticlinal | anti  | syn   | gauche | anticlinal | anti  |
|----------|---------------|--------|------------|-------|-------|--------|------------|-------|-------|--------|------------|-------|
| ф        | 0             | 90     | 120        | 180   | 0     | 90     | 120        | 180   | 0     | 90     | 120        | 180   |
| r (1-2)  | 1.759         | 1.899  | 1.924      | 2.114 | 2.156 | 1.955  | 1.986      | 2.104 | 2.150 | 1.955  | 1.987      | 2.100 |
| r (1-3)  | 1.767         | 1.626  | 1.629      | 1.613 | 1.999 | 2.053  | 2.047      | 2.017 | 2.157 | 2.218  | 2.211      | 2.176 |
| r (2-4)  | 1.759         | 1.899  | 1.924      | 2.114 | 2.156 | 1.955  | 1.986      | 2.104 | 2.150 | 1.955  | 1.987      | 2.100 |
| ∠ (2-1-3 | 3) 115.1      | 107.2  | 105.7      | 93.1  | 105.4 | 106.9  | 105.3      | 95.4  | 107.7 | 107.6  | 105.9      | 95.5  |
| ∠ (1-2-4 | 4) 115.1      | 107.2  | 105.7      | 93.1  | 105.4 | 107.0  | 105.4      | 95.4  | 107.7 | 107.6  | 105.9      | 95.5  |



**Figure S1.** Potential energy curves for  $XCH_2CH_2X$  molecules calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S2.** Potential energy curves for  $XBH_2NH_2X$  molecules calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S3.** Potential energy curves for XCH<sub>2</sub>OX molecules calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S4.** Potential energy curves for XCH<sub>2</sub>SX molecules calculated at the M06-2X/6-311++G(3df,2p) level.

![](_page_28_Figure_0.jpeg)

**Figure S5.** Potential energy curves for XOOX molecules calculated at the M06-2X/6-311++G(3df,2p) level.

![](_page_29_Figure_0.jpeg)

**Figure S6.** Potential energy curves for XSSX molecules calculated at the M06-2X/6-311++G(3df,2p) level.

![](_page_30_Figure_0.jpeg)

**Figure S7.** NBO deletion analysis calculated for FCH<sub>2</sub>CH<sub>2</sub>F at the M06-2X/6-311++G(3df,2p) level.

![](_page_31_Figure_0.jpeg)

**Figure S8.** NBO deletion analysis calculated for CICH<sub>2</sub>CH<sub>2</sub>Cl at the M06-2X/6-311++G(3df,2p) level.

![](_page_32_Figure_0.jpeg)

**Figure S9.** NBO deletion analysis calculated for BrCH<sub>2</sub>CH<sub>2</sub>Br at the M06-2X/6-311++G(3df,2p) level.

![](_page_33_Figure_0.jpeg)

**Figure S10.** NBO deletion analysis calculated for FBH<sub>2</sub>NH<sub>2</sub>F at the M06-2X/6-311++G(3df,2p) level.

![](_page_34_Figure_0.jpeg)

**Figure S11.** NBO deletion analysis calculated for CIBH<sub>2</sub>NH<sub>2</sub>Cl at the M06-2X/6-311++G(3df,2p) level.

![](_page_35_Figure_0.jpeg)

**Figure S12.** NBO deletion analysis calculated for BrBH<sub>2</sub>NH<sub>2</sub>Br at the M06-2X/6-311++G(3df,2p) level.


**Figure S13.** NBO deletion analysis calculated for FCH<sub>2</sub>OF at the M06-2X/6-311++G(3df,2p) level.



**Figure S14.** NBO deletion analysis calculated for CICH<sub>2</sub>OCl at the M06-2X/6-311++G(3df,2p) level.



**Figure S15.** NBO deletion analysis calculated for BrCH<sub>2</sub>OBr at the M06-2X/6-311++G(3df,2p) level.



**Figure S16.** NBO deletion analysis calculated for FCH<sub>2</sub>SF at the M06-2X/6-311++G(3df,2p) level.



**Figure S17.** NBO deletion analysis calculated for CICH<sub>2</sub>SCl at the M06-2X/6-311++G(3df,2p) level.



Figure S18. NBO deletion analysis calculated for BrCH<sub>2</sub>SBr at the M06-2X/6-311++G(3df,2p) level.



Figure S19. NBO deletion analysis calculated for FOOF at the M06-2X/6-311++G(3df,2p) level.



**Figure S20.** NBO deletion analysis calculated for ClOOCl at the M06-2X/6-311++G(3df,2p) level.



Figure S21. NBO deletion analysis calculated for BrOOBr at the M06-2X/6-311++G(3df,2p) level.



Figure S22. NBO deletion analysis calculated for FSSF at the M06-2X/6-311++G(3df,2p) level.



Figure S23. NBO deletion analysis calculated for CISSCI at the M06-2X/6-311++G(3df,2p) level.



Figure S24. NBO deletion analysis calculated for BrSSBr at the M06-2X/6-311++G(3df,2p) level.



**Figure S25.** Hyperconjugation interaction energies for  $FCH_2CH_2F$  obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S26.** Hyperconjugation interaction energies for  $CICH_2CH_2CI$  obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S27.** Hyperconjugation interaction energies for  $BrCH_2CH_2Br$  obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S28.** Hyperconjugation interaction energies for  $FBH_2NH_2F$  obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S29.** Hyperconjugation interaction energies for  $CIBH_2NH_2CI$  obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S30.** Hyperconjugation interaction energies for  $BrBH_2NH_2Br$  obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S31.** Hyperconjugation interaction energies for  $FCH_2OF$  obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S32.** Hyperconjugation interaction energies for  $CICH_2OCI$  obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S33.** Hyperconjugation interaction energies for  $BrCH_2OBr$  obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S34.** Hyperconjugation interaction energies for  $FCH_2SF$  obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S35.** Hyperconjugation interaction energies for  $CICH_2SCI$  obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S36.** Hyperconjugation interaction energies for  $BrCH_2SBr$  obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S37.** Hyperconjugation interaction energies for FOOF obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S38.** Hyperconjugation interaction energies for ClOOCl obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S39.** Hyperconjugation interaction energies for BrOOBr obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S40.** Hyperconjugation interaction energies for FSSF obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S41.** Hyperconjugation interaction energies for CISSCI obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S42.** Hyperconjugation interaction energies for BrSSBr obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S43.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for  $FCH_2CH_2F$  calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S44.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for  $CICH_2CH_2CI$  calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S45.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for  $BrCH_2CH_2Br$  calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S46.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for  $FBH_2NH_2F$  calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S47.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for  $ClBH_2NH_2Cl$  calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S48.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for  $BrBH_2NH_2Br$  calculated at the M06-2X/6-311++G(3df,2p) level.


**Figure S49.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for  $FCH_2OF$  calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S50.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for ClCH<sub>2</sub>OCl calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S51.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for  $BrCH_2OBr$  calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S52.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for  $FCH_2SF$  calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S53.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for  $CICH_2SCI$  calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S54** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for  $BrCH_2SBr$  calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S55.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for FOOF calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S56.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for ClOOCl calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S57.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for BrOOBr calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S58.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for FSSF calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S59.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for ClSSCl calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S60.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for BrSSBr calculated at the M06-2X/6-311++G(3df,2p) level.



**Figure S61. a)**  $\sigma_{CH} \rightarrow \sigma^*_{CF}$  and **b)** LP(2)F  $\rightarrow \sigma^*_{CH}$  hyperconjugative interaction representations for the *gauche* and **c)** LP(2)F  $\rightarrow \sigma^*_{CH}$  hyperconjugative interaction for the *anti* conformer of FCH<sub>2</sub>CH<sub>2</sub>F. All orbital isosurfaces were plotted with isovalues of 0.07 au.



**Figure S62. a)**  $\sigma_{CF} \rightarrow \sigma^*_{CF}$ , **b)**  $\sigma_{CCI} \rightarrow \sigma^*_{CCI}$  and **c)**  $\sigma_{CBr} \rightarrow \sigma^*_{CBr}$  hyperconjugative interaction representations for the *anti* conformers of FCH<sub>2</sub>CH<sub>2</sub>F, ClCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl and BrCH<sub>2</sub>CH<sub>2</sub>Br, respectively. All orbital isosurfaces were plotted with isovalues of 0.07 au.



**Figure S63. a)** LP(2)O  $\rightarrow \sigma^*_{CF}$  **b)**  $\sigma_{CH} \rightarrow \sigma^*_{OF}$  hyperconjugative interactions for the *gauche* conformer of FCH<sub>2</sub>OF and **c)** LP(2)O  $\rightarrow \sigma^*_{OF}$  for the *gauche* conformer of FOOF. All orbital isosurfaces were plotted with isovalues of 0.07 a.u.



**Figure S64.** Number of remaining hyperconjugative interactions and the amplitude of the "Others" curve *versus* the cutoff value for the decomposition of hyperconjugative interactions and electrostatics interactions for XCH<sub>2</sub>CH<sub>2</sub>X molecules.



**Figure S65.** Number of remaining hyperconjugative interactions and the amplitude of the "Others" curve *versus* the cutoff value for the decomposition of hyperconjugative interactions and electrostatics interactions for XBH<sub>2</sub>NH<sub>2</sub>X molecules.



**Figure S66.** Number of remaining hyperconjugative interactions and the amplitude of the "Others" curve *versus* the cutoff value for the decomposition of hyperconjugative interactions and electrostatics interactions for XCH<sub>2</sub>OX molecules.



**Figure S67.** Number of remaining hyperconjugative interactions and the amplitude of the "Others" curve *versus* the cutoff value for the decomposition of hyperconjugative interactions and electrostatics interactions for XOOX molecules.



**Figure S68.** Number of remaining hyperconjugative interactions and the amplitude of the "Others" curve *versus* the cutoff value for the decomposition of hyperconjugative interactions and electrostatics interactions for XCH<sub>2</sub>SX molecules.



**Figure S69.** Number of remaining hyperconjugative interactions and the amplitude of the "Others" curve *versus* the cutoff value for the decomposition of hyperconjugative interactions and electrostatics interactions for XSSX molecules.



**Figure S70.** NBO deletion analysis calculated for CF<sub>3</sub>OOCF<sub>3</sub> at the M06-2X/6-311++G(3df,2p) level



**Figure S71.** Hyperconjugation interaction energies for  $CF_3OOCF_3$  obtained at the M06-2X/6-311++G(3df,2p) level using NBO analysis.



**Figure S72.** Atomic charges and natural Coulomb electrostatic (NCE) energy curves for  $CF_3OOCF_3$  calculated at the M06-2X/6-311++G(3df,2p) level.