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1 Characterization of OA-Capped Nanocrystals During Synthesis

We monitored shell growth during synthesis of the OA-capped NCs by measuring absorbance
spectra at each step, which are shown in Figure S1; the change in slope below 500 nm is a
signature of the growth of the gradient shell. This optical characterization was complemented
by transmission electron microscopy, see Figure S2 for example images.
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Figure S1: Absorbance spectra of OA-capped core/shell QDs at six stages of their synthesis, from the
bare CdSe cores to the final core/gradient shell NCs (bottom to top, vertical offsets added for clarity).
The absorbance spectrum of the CdSe cores was measured 180 s after injection of TOPSe, while the
other five spectra were recorded at the end of the 10-minute annealing period for the respective shell
layer.
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Figure S2: Transmission electron microscopy of OA-capped NCs at different stages of their synthesis:
(a) bare CdSe cores; (b) after addition of the first shell layer; (c) after deposition of the second shell
layer, which is richer in Zn; (d) final core/gradient shell NCs with 5 shell layers.
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2 EDX and XPS Analysis of Halide-Capped Nanocrystals

Figure S3 (a) shows a scanning electron microscopy (SEM) image of a film of halide-capped
NCs, prepared by letting dry a drop of NC solution on a titanium/gold-covered silicon wafer.
Elemental analysis of this film and of a bare-substrate region was performed by energy-
dispersive X-ray (EDX) spectroscopy at 15 keV (Phenom G2 Pro SEM). As can be seen in
Fig. S3 (b), the NC film is, as expected, mainly composed of cadmium, zinc, sulfur and sele-
nium, in addition to which we detected a clear signature of chlorine that confirms successful
ligand exchange. It is furthermore important to note the absence of carbon and nitrogen,
which helps to rule out that methyl ammonium chloride (CH3NH3Cl) was involved in the lig-
and exchange. The EDX spectrum of the reference region is dominated by silicon, gold and
titanium, with weak contributions from scattered isolated NCs that are invisible in the SEM
image of Fig. S3 (a).
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Figure S3: Elemental analysis of halide-caped NCs by energy-dispersive X-ray (EDX) spectroscopy.
(a) SEM image of a film of halide-caped NCs on a titanium/gold-covered silicon wafer. (b) EDX
spectra of the NC film (blue) and of the bare substrate (sandy brown); the two sample spots exhibiting
these spectra are indicated in the SEM image (a) using the same color scheme. The elemental lines
were annotated with the help of software provided for this purpose by the manufacturer of the SEM.

An X-ray photoelectron spectrum (XPS) of the halide-capped NCs was recorded with an
Al source at an energy of 1.4866 keV (VG CLAM IV analyzer) and is presented in Fig. S4.
Indexing of the spectral bands revealed the expected main elements (Cd, Zn, S, Se, Au) and
a Cl 2p peak at 201 eV, which is this chlorine transition with the highest expected signal and
confirms the presence of Cl on the NC surface; on the other hand, no sufficiently strong signal
of bromine could be detected.
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Figure S4: XPS spectrum of a film of halide-capped NCs on on a Ti/Au-covered Si wafer. The iden-
tified peaks are labeled by chemical element and electron orbital. (LMM denotes an Auger transition.)
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3 Aging Phenomena in PL Spectra

The starting point for modeling our PL emission spectra is the band-gap energy Egap of bulk
CdSe, to which we add the energy of the lowest exciton state in a spherical quantum dot of
radius R according to Brus, Eq. (12) in Ref. S11, to obtain the transition energy

E∗(R) = Egap + ℏ2π2

2R2

[
1

m∗
e

+ 1
m∗

h

]
− 1.786 e2

4πϵ0ϵR
, (S1)

in which the second term is the sum of the ground-state energies of an electron and a hole
with an effective mass of m∗

e and m∗
h, respectively, while the third term corresponds to the

expectation value of the Coulomb attraction between these two charges in a medium with a
dielectric constant of ϵ. As we are dealing with core/gradient-shell NCs, we interpret R in
Eq. (S1) as an effective confinement radius that can be larger than rcore, the geometric radius
of the NC core; we have furthermore omitted the solvation-energy term of Ref. S11 because
neither the physical interpretation nor the mathematical expression of the underlying effect is
applicable to a system without a well-defined interface between two distinct dielectrics. The
numerical factor of the Coulomb term in Eq. (S1) arises from the integral
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(S2)

where we have omitted the details of rewriting |r1 − r2|−1, the inverse of the electro-hole
distance, by means of the generating function of the Lengendre polynomials Pl(cos θ), where
θ is the angle between r1 and r2; this method of separating the angular parts (Ω1, Ω2) of the
above integral from its radial parts (r1, r2) is a standard technique for Coulomb integrals of
hydrogen-like wave functions [S12].

The central exciton emission frequency ν∗(R) follows from Eq. (S1) as ν∗(R) = E∗(R)/h,
and we model the homogeneous emission spectrum of a single NC as a normalized Gaussian
spectral probability density ρhom(ν |R) distributed around this frequency,

ρhom
(
ν |R

)
= h√

2π σ0
exp

{
−
[
ν − ν∗(R)

]2
2 (σ0/h)2

}
, (S3)

whose homogeneous linewidth σ0, expressed here in units of energy difference, we expect to
be on the order of the thermal energy, σ0 ≈ kB T . To take into account the heterogeneity of
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our QD samples, we assume that the effective confinement radius R of the individual NCs is
governed by a normal probability density p(R) centered on a certain average value R0,

p(R) = 1√
2π σR

exp
[
−
(
R − R0

)2
2 σ2

R

]
. (S4)

The width σR of this distribution could be influenced both by variations in NC size and by
structural factors such as trapped charges or other defects modifying the confinement poten-
tial. We therefore expect σR of a newly-deposited sample to be comparable to the NC size
distribution observed in TEM images (about 10 %); structural degradation due to aging could
then increase σR and/or shift R0.

Combining the homogeneous emission spectrum of Eq. (S3) with the size distribution of
Eq.(S4), we obtain the inhomogeneous PL emission spectrum ρ(ν) of an NC ensemble by
numerical integration,

ρ(ν) =
∫ ∞

rcore
p(R) ρhom

(
ν |R

)
dR , (S5)

where the lower integration boundary was set to rcore = 2.5 nm, the core diameter of our QDs,
because we assume that the NC core remains unaffected by structural modifications of the shell
so that the exciton is never confined to a sphere smaller that the core. We have nevertheless
verified that the choice of the lower integration boundary in Eq. (S5) does not significantly
alter the predictions of our model, provided that this boundary remains large enough to avoid
problems with the numerical integration algorithm arising from the divergence of Eq. (S1) at
R = 0. We furthermore note that the Gaussian size distribution of Eq. (S4) does not stipulate
any minium radius, which means that after fitting any given spectrum one has to make sure
that the identified parameters R0 and σR indeed imply only a negligible fraction of NCs with
a confinement radius smaller than rcore; in practice, this requirement means having to verify
that

∫ rcore
−∞ p(R) dR ≪ 1.

The PL emission spectrum S(λ) measured on the wavelength scale with a resolution of ∆λ
follows from Eq. (S5) as

S(λ) =
∫ c/(λ−∆λ/2)

c/(λ+∆λ/2)
ρ(ν) dν ≈ ρ(c/λ)

∫ c/(λ−∆λ/2)

c/(λ+∆λ/2)
dν

= ρ(c/λ) c ∆λ

(λ + ∆λ/2)(λ − ∆λ/2) ≈ ρ(c/λ) c ∆λ

λ2 ∝ ρ(c/λ)
λ2 ,

(S6)

where we made use of the fact that ∆λ ≪ λ and we have furthermore assumed that the
emission spectrum varies slowly on the scale of ∆λ, i. e.,∣∣∣∣ dρ(c/λ)

dλ

∣∣∣∣ · ∆λ ≪ ρ(c/λ) . (S7)

The final proportionality relation of Eq. (S6) is sufficient for modeling the normalized PL
emission spectra that we present in the main article; we simply applied the same normalization
procedure to the simulated spectra.

To interpret our PL emission spectra, we used Egap = 1.74 eV, m∗
e = 0.13 m0, m∗

h = 0.3 m0,
and ϵ = 10.2 as fixed material constants [S13] in Eq. (S1), while the homogeneous linewidth
σ0, the average effective confinement radius R0, and the width σR of the NC size distribution in
Eqs. (S3) and (S4), respectively, were treated as adjustable model parameters. Our measured
PL spectra show a weak background contribution decreasing linearly from 500 nn to 750 nm,
whose maximum amplitude is 0.02 − 0.05 on the scale of the normalized spectra; we attribute
this additional signal to the luminescence of residual by-products of the NC synthesis. We
therefore corrected the PL spectra by subtracting a linear interpolation between the baselines
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Figure S5: Photoluminescence emission spectra and total PL intensity of halide-capped NCs dispersed
as a thin film on a glass substrate. The two PL spectra (solid lines) in the top row were recorded (a) on
deposition day and (b) four days later; these spectra were derived from the ones in Fig. 2 c of the main
article by subtraction of a weak linear background (see text for details) to facilitate comparison with the
background-free model described in Eqs. (S1) – (S6). The dashed lines show least-squares-minimization
adjustments to the spectra; the corresponding best-fit model parameters are indicated in each graph.
(c) The total detected PL emission intensity as a function of time after film deposition. Filled circles
indicate measurements, between which the film was kept in the dark but exposed to ambient air.

levels at 500 nm and at 750 nm (inferred by averaging 10 data points at each end) to obtain
background-free spectra, which we then renormalized to a maximum intensity of unity. The
resulting corrected spectra for the thin-film sample of halide-capped NCs are shown in Fig. S5,
as are the model curves after least-squares optimization of the three adjustable parameters.

As can be seen in Fig. S5 a and b, Eqs. (S1) – (S6) reproduce the spectra of both the newly-
deposited film and the four-days-old sample very well with an average effective confinement
radius of R0 = 3.8 nm and a homogeneous linewidth σ0 around 40 meV (≈ 1.5 kBT ). In
the framework of this model, the aging phenomenon is thus attributed to a widening of the
distribution of the effective confinement radius, which is inferred to have a standard deviation
of 8 % in the fresh film (in good agreement with the 10 % observed for the size distribution
in TEM images) and is found to have increased to 14 % in the aged sample. We note that
the imputed R0 is, as expected, somewhat larger than the core radius (2.5 nm) but stays well
below the overall radius of the core/shell structure (7.4 nm). Furthermore, the simplification
of using a Gaussian size distribution, Eq. (S4), in a numerical integration starting at rcore,
Eq. (S5), remains compatible with the results of the least-squares fits, as we are effectively
only cutting off negligible fractions of the nominal distributions, about 10−5 for day 0 and
0.7 % for day 4, according the identified optimum values for R0 and σR. Our simple model thus
explains the observed aging phenomenon in terms of a moderate broadening of the distribution
of effective confinement sizes; the increased asymmetry observed in the spectra of older samples
is accounted for by the non-linear interplay of the R−1 and R−2 terms in the expression of
the exciton energy, Eq. (S1). Fig. S5 c shows the evolution of the total emission intensity for
identical excitation conditions; a rapid initial loss of about 50 % of PL intensity was observed,
after which signal intensity and spectral shape remained stable for a week.
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4 Maximum-Likelihood Analysis of Photoluminescence Decay Curves and
Photon-Coincidence Histograms

We used maximum-likelihood (ML) analysis to identify a set of parameters leading to the best
possible agreement between a given parameter-dependent model function and a measured set
of data points. This data is made up of an ensemble {ci} of detected counts in n distinct
detection channels, and it has to be compared to the corresponding predictions {gi(θ)} of a
model function gi that depends on a vector of m adjustable parameters, θ = (θ1, . . . , θm). In
our case the index i = 1, . . . , n of a detection channel represents the time that elapsed between
the detection of the corresponding photon and a prior “start” event, which is an excitation
laser pulse in fluorescence lifetime measurements and a previously-detected photon in photon-
coincidence histograms. In the following sections, we will first present the general principle of
maximum-likelihood analysis and then discuss its application to the various models that we
used for our time-resolved photoluminescence data.

4.1 Quantifying Data-Model Agreement: Likelihood Function and Poisson Deviance

Maximum-likelihood (ML) analysis [S1–S5] is an efficient and unbiased approach to parameter
estimation, which is preferable to the widely used χ2 minimization, especially for counting
channels containing a small number of photons [S6]. As outlined above, our data is comprised
of a histogram of n channels, where each channel i = 1, . . . , n contains the number ci of counts
detected with a delay between (i − 1) tb and i tb relative to the start event; tb is the histogram
bin time. A given model gi has its associated vector θ = (θ1, . . . , θm) of m parameters such as
decay rate(s) and amplitude(s). The likelihood function L is the joint probability of observing
a given sequence of channel counts {ci} and can be written as [S3]

L
(
c1, . . . , cn|θ

)
=

n∏
i=1

p(ci|θ) , (S8)

where p(ci|θ) is the conditional probability of detecting ci counts in the i-th channel for a certain
choice of model parameters θ. The specific parameter vector θ̂ that maximizes the likelihood
function L represents the maximum-likelihood estimation (MLE) of the model parameters for
the data set {ci}. For practical purposes it is usually ln(L) that is maximized by parameter
variation, as the transition to logarithms allows to rewrite the product in Eq. (S8) as a sum of
ln(pi) terms. Analytic expressions for θ̂ can be found in some cases by setting the derivatives
of ln(L) with respect to the parameters θk to zero (k = 1, . . . , m) and solving the resulting
system of equations for the m unknown parameters; alternatively, a numerical search for a
maximum in the m-dimensional θ space can be performed if a given model is not amenable to
analytic resolution of the ML conditions.

The multinomial probability of observing the data set {ci} for the n photon counting channels
is given by [S5]

P (c1, . . . , cn|θ) = N !∏n
i=1 ci!

n∏
i=1

pi(θ)ci , (S9)

where N =
∑n

i=1 ci is the total number of detected photons and pi(θ) denotes the proba-
bility that any given photon will fall into detection channel i; these probabilities have to be
normalized to the detection window such that

∑n
i=1 pi(θ) = 1. The relationship between the

model function gi(θ) as defined above and the probabilities pi(θ) in Eq. (S9) is straightfor-
ward, gi(θ) = N · pi(θ). We used the multinomial model of Eq. (S9) because it offers certain
advantages over an approach based on Poisson distributions [S5]. The probabilities pi(θ) can
be calculated for a given decay model as [S5]

pi(θ) =
∫

∆i

R(t|θ) dt , (S10)
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where ∆i = [(i − 1) tb, i tb] is the temporal interval associated with the i-th counting channel
and R(t|θ) dt is the probability of detecting an emitted photon between t and t + dt after a
start event. [The specific models R(t|θ) and the resulting pi(θ) for fitting our data are de-
scribed in the following sections.] After calculating the probabilities pi according to Eq. (S10),
we used the fast-Fourier-transform-based routine fftconv of GNU Octave (www.octave.org)
to convolute the model with the measured instrumental response function (IRF) to obtain
the IRF-adjusted probabilities p̃i for our experimental setup; this convolution procedure does
not preserve normalization, therefore we renormalized the probabilities once more to ensure∑n

i=1 p̃i(θ) = 1 before calculating gi(θ) = N · p̃i(θ) and proceeding with the analysis. (The
inclusion of the IRF in the models is an improvement compared to our earlier work [S7].) The
single-detector IRFs were measured on attenuated reflections of the excitation laser pulses;
the combined two-detector IRF needed for the photon-coincidence histograms was obtained by
convolution of the IRFs of the two individual detectors.

Instead of maximizing the likelihood function L we used an equivalent approach that consists
in finding θ̂ by minimization of a statistical measure D(θ) that quantifies the discrepancy
between the data set {ci} and the corresponding predictions {gi(θ)} of the model. Given that
the data in photon-counting histograms is Poisson-distributed, we used the Poisson deviance
[S3]

DPoiss(θ) = 2
n∑

i=1

{
ci ln

[
ci/gi(θ)

]
−
[
ci − gi(θ)

]}
(S11)

as an appropriate statistical measure, which we minimized with the gradient-based fminunc
search routine of GNU Octave to identify the MLE parameter vector θ̂.

4.2 Models for Photon-Counting Data

4.2.1 Monoexponential Decay Curves

The probability density R(t|γ, T ) of a background-free monoexponential decay with rate γ is
[S5]

R(t|γ, T ) = γ exp
(
−γt

) 1
1 − exp(−γT ) , (S12)

which has been renormalized to the overall temporal width T of the detection window; in
our case T is identical to the repetition time Trep of the pulsed excitation laser. Given data
acquisition with n channels of equal width (duration) tb = T/n, this means that the probability
of a photon being detected in channel i, Eq. (S10), takes the following form [S5]:

pi(γ, T, n) =
∫ iT/n

(i−1)T/n
R(t|γ, T ) dt = exp

(
−iγT/n

) exp(γT/n) − 1
1 − exp(−γT ) (S13)

In practice an additional adjustable parameter is needed, a delay time δ > 0 to take into
account the timing of the start event with respect to t = 0 of the measurement window. This
delay shifts the integration boundaries in Eq. (S13), which now takes the form

pi(γ, δ, T, n) =
∫ iT/n−δ

(i−1)T/n−δ
R̃(t|γ, T ) dt = γ

1 − exp(−γT )

∫ iT/n−δ

(i−1)T/n−δ
exp

[
−γ · mod (t, T )

]
, (S14)

where the modified probability density R̃(t|γ, T ) was obtained by replacing t → mod (t, T ) in
Eq. (S12) in order to interpret negative times correctly, which correspond to the tail end of the
decay curve triggered by the previous excitation pulse. (Recall that T = Trep in our setup.)
The expression of pi(γ, δ, T, n) thus becomes slightly more complex than Eq. (S13) as one has
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to distinguish the channels covering the time before, during, and after the transition from the
previous to the current excitation pulse,

pi(γ, δ, T, n) = C ·


(
eγ T/n − 1

)
eγ[δ−T (1+i/n)] for i ⩽ ⌊nδ/T ⌋[(

eγ T (1/n−1) − 1
)

eγ(δ−T i/n) + 1 − e−γT
]

for i = ⌊nδ/T ⌋ + 1(
eγT/n − 1

)
eγ(δ−T i/n) for i ⩾ ⌊nδ/T ⌋ + 2

,

(S15)
where ⌊·⌋ denotes the floor function and the normalization constant is C = [1 − exp(−γT )]−1.

For monoexponential decay on non-zero background, the probability of photon detection in
channel i changes to [S5]

pi(γ, b, δ, T, n) = b

n
+
(
1 − b

)
pi(γ, δ, T, n) , (S16)

where b is the relative background contribution (0 ⩽ b < 1).

4.2.2 Bi-, Tri- and Quadri-Exponential Decay Curves

The probability of photon detection in the i-th channel for biexponential decay curves on
non-zero background is [S5]

pi(γ1, γ2, a, b, δ, T, n) = b

n
+
(
1 − b

) [
a pi(γ1, δ, T, n) +

(
1 − a

)
pi(γ2, δ, T, n)

]
, (S17)

where γ1 and γ2 are the two decay rates, a is the relative strength of the γ1 component, and b
the fraction of background counts.

The analogous expression for a triexponential decay is

pi(γ1, γ2, γ3, a1, a2, b, δ, T, n) = b

n
+
(
1 − b

) [
a1 pi(γ1, δ, T, n) + a2 pi(γ2, δ, T, n)

+
(
1 − a1 − a2

)
pi(γ3, δ, T, n)

]
, (S18)

with the three decay rates γ1, γ2 and γ3, the relative strengths a1 and a2 of the first two
components, and the fraction of background counts b.

The quadri-exponential model takes the form

pi(γ1, γ2, γ3, γ4, a1, a2, a3, b, δ, T, n) = b

n
+
(
1 − b

) [
a1 pi(γ1, δ, T, n) + a2 pi(γ2, δ, T, n)

+ a3 pi(γ3, δ, T, n) +
(
1 − a1 − a2 − a3

)
pi(γ4, δ, T, n)

]
, (S19)

with the four decay rates γ1, γ2, γ3 and γ4, the relative strengths a1, a2 and a3 of the first
three components, and the fraction of background counts b.

4.2.3 Photon-Coincidence Histograms (Hanbury Brown – Twiss Measurement)

The types of nanocrystals investigated in this article are known to exhibit fluorescence anti-
bunching in photon-coincidence measurements at the single-QD level [S8]. In an ideal back-
ground-free experiment on an individual QD, the probability of detecting a second photon
(stop event) immediately after a first one has been registered (start event) is equal to zero,
as each excitation-emission cycle requires a finite amount of time to complete, which leads to
an antibunching dip with exponential flanks in the photon-coincidence histogram [S8]. For
practical reasons a delay δ of roughly half the width of the detection window is imposed on
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the stop channel (delayed-coincidence method), which leads to a mirror symmetry of the co-
incidence histogram around t = δ; the t < δ region of the antibunching curve corresponds to
events for which the two detectors reversed their respective roles (“stop” actually happened
before “start”). The corresponding model function is

R(t|γ, δ, T ) = γ

eγ(δ−T ) + e−γδ + γT − 2
·
[
1 − exp

(
− γ · |t − δ|

)]
, (S20)

which has been normalized to the duration T of the detection window. The probability for an
observed start-stop delay to fall into the temporal interval covered by channel i is then given
by

pi(γ, δ, T, n) =
∫ iT/n

(i−1)T/n
R(t|γ, δ, T ) dt . (S21)

Due to the absolute value |t − δ| in the formula for R(t|γ, δ, T ) of Eq. (S20), the resulting
expression for pi has different forms for channels i before, at, and after the turning point (i. e.,
the channel covering the moment t = δ),

pi(γ, δ, T, n) = C ·


[
γT/n −

(
1 − e−γT/n

)
eγ(iT/n−δ)] for i ⩽ ⌊nδ/T ⌋[

γT/n + eγ(δ−iT/n) + eγ[(i−1)T/n−δ] − 2
]

for i = ⌊nδ/T ⌋ + 1[
γT/n +

(
1 − eγT/n

)
eγ(δ−iT/n)] for i ⩾ ⌊nδ/T ⌋ + 2

, (S22)

where the normalization constant is C = [eγ(δ−T ) + e−γδ + γT − 2]−1.

4.3 Uncertainty of Estimated Parameters: Bootstrap Method

We used the bootstrap method [S9] to estimate the uncertainties of the parameters that we
obtained from the MLE analyses that we carried out. The bootstrap approach consists in
creating synthetic data sets from one given measurement ensemble {ci} by randomly selecting
n points from the experimental data. This selection process is implemented as drawing with
replacement, which means that each data point has the same probability to be chosen in each
draw, irrespective of whether it has already been selected in earlier draws. Each synthetic data
set derived in this manner will therefore have a random fraction of the original data points
missing (∼ 37 % on average), while a number of the included data points is duplicated (and,
on increasingly rare occasions, triplicated, quadrupled, etc.) such that the overall length n
of the original data set is conserved. The ensemble of synthetic data sets thus obtained is
then subjected to the same analysis as the measured data; the resulting distributions of the fit
parameters furnish a good estimation for how precisely the parameters can be known from the
data, provided that the measured data points can be assumed to be independent and identically
distributed [S9]. The uncertainties of all MLE parameters reported in this article have been
determined in this manner, based on 100 bootstrap runs (original data plus 99 resampled
sets). These hundred ML-estimations of the model parameters θ = (θ1, . . . , θm) were used to
calculate the covariance matrix of θ̂, which yielded both the variances σ2

k, k = 1, . . . , m, of
each individual ML-estimation θ̂k (and thus the standard deviations σk as estimates of the
parameter uncertainties) and the covariances σkl between all pairs of parameters θ̂k and θ̂l ̸=k.
The estimation of the uncertainty σ̃i of the ML-model at each data point i was then obtained
by error propagation [S10] as

σ̃2
i =

m∑
k=1

(
∂gi(θ)

∂θk

∣∣∣∣
θ̂

)2

· σ2
k + 2

m−1∑
k=1

m∑
l=k+1

(
∂gi(θ)

∂θk

∣∣∣∣
θ̂

)
·
(

∂gi(θ)
∂θl

∣∣∣∣
θ̂

)
· σkl , (S23)

where the partial derivatives of the model gi(θ) with respect to the parameters θk were calcu-
lated numerically after convolution of the appropriate analytic expression of the model function
with the measured instrumental response function.
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4.4 Quantitative Comparison of Models: Likelihood-Ratio Test

If there is more than one candidate model to interpret a given dataset, maximum-likelihood
analysis can be combined with a statistical test for the relative plausibility of the competing
models. For nested models, i. e., if one candidate is a special case of an alternative model, a
likelihood-ratio test can be used to judge if the more complicated model achieves a statistically
significant improvement in the description of the data [S3]. In the context of this work, this
criterion was used to decide if the introduction of an additional decay component is justifiable;
for example, a monoexponential decay, Eq. (S16), is a special case of a biexponential decay,
Eq. (S17), with a = 0 or a = 1. Expressed in terms of Poisson deviances, Eq. (S11), a decision
criterion can be formulated as follows [S3]: If a model with m adjustable parameters is a
special case of an alternative model with m + k parameters, then the more complex model
will always fit the data better due to the additional k degrees of freedom providing more
flexibility for adapting to the effects of experimental noise. If the simpler model is actually
correct/sufficient, then the difference in the Poisson deviances of the two models is expected
to follow a χ2-distribution with k degrees of freedom,(

Dm − Dm+k

)
∼ χ2

k

(
Dm − Dm+k

)
. (S24)

One can therefore calculate a p-value for the statistical significance of an observed improvement
in data-model agreement,

p = 1 − Qk

(
Dm − Dm+k

)
, (S25)

where Qk(x) =
∫ x

0 χ2
k(x′) dx′ is the cumulative distribution function associated with χ2

k(x).
After setting a threshold for statistical significance, for example p = 0.05, one can thus decide
if choosing the more complex model is warranted. To give a practical example, if one wants
to address the question of whether an additional decay component is necessary to describe a
fluorescence lifetime curve, one has k = 2 as one would add two adjustable parameters, the
supplementary decay constant and its relative contribution (amplitude). Choosing a threshold
of significance of p = 0.01, one then finds that an improvement of at least (Dm − Dm+2) = 9.2
can be considered significant. Adopting this criterion would therefore amount to accepting an
average of one false positive (choosing the model with an additional decay process where this
is not warranted) in every 100 decisions taken.
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5 Two-Level Saturation Model

Figure 4 of the main article shows the saturation effects for the number of detected photons
as a function of excitation power; here we discuss a simple two-level saturation model for this
phenomenon, illustrated in Fig. S6 for both resonant and non-resonant excitation. We consider
the electronic ground state |1⟩ and a given excited state |2⟩, whose spontaneous relaxation rate
(the inverse of its lifetime) is γ. The laser-induced pump rate W as a function of the excitation
power P is given by

W = σI

hν
= σP

Ahν
, (S26)

where σ is the cross-section of the |1⟩ ↔ |2⟩ transition, ν is the average laser frequency, and
I = P/A is the laser intensity; A is an (effective) excitation area. Introducing the saturation
power Psat as

Psat = kAhν

σ
, (S27)

allows to rewrite the pump rate as W = γ (P/Psat); the saturation power Psat is the power
at which the pump rate W equals the excited-state relaxation rate γ. In the case of resonant
excitation, the laser induces transitions in both senses, |1⟩ → |2⟩ (absorption) and |2⟩ → |1⟩
(stimulated emission); the latter process is absent for non-resonant excitation.

The resonant excitation scheme of Fig. S6 translates into the following rate equations for
the population densities N1 (ground state) and N2 (excited state):

dN1
dt

= −WN1 + (γ + W )N2 and dN2
dt

= +WN1 − (γ + W )N2 , (S28)

whose solution for the excited state population is

N2(t) = N
W

2W + γ

{
1 − exp

[
−(2W + γ)t

]}
, (S29)

provided that the entire QD population started out in the ground state at t = 0, meaning that
N1(0) = N , where N is the total population density.

If we approximate the excitation laser as a rectangular pulse starting at time t = 0 and lasting
until t = Tpulse, in which case the laser power P has to be understood as a mean effective power,
then we obtain the following expression for the excited-state population density the end of each
laser pulse:

N2(Tpulse) = N
P/Psat

1 + 2P/Psat

{
1 − exp

[
−(1 + 2P/Psat)γ Tpulse

]}
, (S30)

|2〉

|1〉

|2〉

|1〉

W γ W γ

resonant
excitation

non-resonant
excitation

Figure S6: A two-level system as a simple model for the interaction of the excitation laser with a
quantum dot, for resonant (left) and non-resonant(right) excitation. States |1⟩ and |2⟩ represent the
ground and the excited state, respectively; W is the laser-induced pump rate and γ = 1/τ is the excited-
state relaxation rate.
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from which the expected number of detected photons, nphot, can be obtained by multiplication
with the detection volume V and the overall detection efficiency η. We thus deduce the power-
dependent number of detected photons as

nphot(P ) = ηNV
P/Psat

1 + 2P/Psat

{
1 − exp

[
−(1 + 2P/Psat)γ Tpulse

]}
, (S31)

which simplifies to a linear relationship in the low-power limit,

nphot(P ) ≈
ηNV

(
1 − e−γTpulse

)
Psat

P for P ≪ Psat . (S32)

If we repeat the same reasoning for the non-resonant excitation scheme, we obtain a slightly
different expression for the number of detected photons,

n′
phot(P ) = ηNV

P/Psat
1 + P/Psat

{
1 − exp

[
−(1 + P/Psat)γ Tpulse

]}
, (S33)

which, however, is indistinguishable from the resonant case, Eq.(S31), when used as a fit
function for the data of Fig. 4 without an independent means of accurately determining the
cross-section σ as well as the experimental parameters η, N , V and A; furthermore, the linear
low-power limit of Eq. (S33) is identical to Eq. (S32).
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6 Model Comparison for Photoluminescence Decay Curves in Solution

The present section provides a graphical illustration of the maximum-likelihood analysis tech-
niques described in detail in Section 4 and the comparison of the four different models, based on
the photoluminescence decays of QDs in solution already presented in Fig. 3 a of the main arti-
cle. Figures S7 and S8 show the corresponding time-resolved photoluminescence data again for
the OA- and the halide-capped NCs, respectively; the improvement in the data-model agree-
ment that is achieved by adding an additional decay component can be appreciated directly
by comparing the corresponding graphs and the normalized residues Ri, which were calculated
from the data points {ci} and a given maximum-likelihood model gi(θ̂) as

Ri = ci − gi(θ̂)√
gi(θ̂)

. (S34)

If a model describes the data adequately then the only remaining data-model differences
ci − gi(θ̂) will arise from photon-counting noise, meaning that the ci are expected to be
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Figure S7: The photoluminescence decay curve of OA-capped NCs in solution (the same data is shown
normalized in Fig. 3 a of the main article) fitted with a mono-, a bi-, a tri- and a quadri-exponential
model, respectively. The four main panels depict the (identical) data (filled circles) with the best-fit
model in question (solid curve); the insets show the same graphical material with a linear ordinate
for the first 20 ns of the decay; additionally, the 10 σ confidence interval of each model [gray area, see
Eq. (S23)] and the shape of the model function before convolution with the response of the instrument
(dashed line) are included. The D values given are Poisson deviances DPoiss as defined in Eq. (S11).
The bottom panels show the normalized residues of each model, Eq. (S34), with an indication of
the mean µ and the empirical standard deviation σ. The maximum-likelihood model parameters are:
(a) monoexponential model, Eq. (S16) with decay time τ = 1/γ = (27.5 ± 0.2) ns and background
contribution b = (3.0 ± 0.1) %; (b) biexponential model, Eq. (S17) with τ1 = 1/γ1 = (37.3 ± 0.7) ns,
a = (64.9 ± 2.6) %, τ2 = 1/γ2 = (14.4 ± 0.7) ns, and b = (1.3 ± 0.1) %; (c) tri-exponential model,
Eq. (S18) with τ1 = (46.0 ± 0.8) ns, a1 = (38.5 ± 1.6) %, τ2 = (20.5 ± 0.3) ns, a2 = (59.0 ± 1.6) %, τ3 =
(1.3 ± 0.2) ns, and b = (0.9 ± 0.1) %; (d) quadri-exponential model, Eq. (S19) with τ1 = (49.6 ± 0.8) ns,
a1 = (31.1 ± 1.1) %, τ2 = (22.3 ± 0.3) ns, a2 = (64.7 ± 1.1) %, τ3 = (3.5 ± 0.2) ns, a3 = (3.1 ± 0.2) %,
τ4 = (0.2 ± 0.1) ns, and b = (0.8 ± 0.1) %
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Figure S8: The photoluminescence decay curve of halide-capped NCs (the same data is shown nor-
malized in Fig. 3 c of the main article) fitted with a mono-, a bi-, a tri-, and a quadri-exponential model,
respectively. The four main panels depict the (identical) data (filled circles) with the best-fit model in
question (solid curve); the insets show the same graphical material with a linear ordinate for the first
20 ns of the decay; additionally, the 10 σ confidence interval of each model [gray area, see Eq. (S23)]
and the shape of the model function before convolution with the response of the instrument (dashed
line) are included. The D values given are Poisson deviances DPoiss as defined in Eq. (S11). The bot-
tom panels show the normalized residues of each model, Eq. (S34), with an indication of the mean µ
and the empirical standard deviation σ. The maximum-likelihood model parameters are: (a) mono-
exponential model, Eq. (S16) with decay time τ = 1/γ = (18.6 ± 0.3) ns and background contribution
b = (6.1±0.1) %; (b) biexponential model, Eq. (S17) with τ1 = 1/γ1 = (25.3±0.3) ns, a = (76.2±1.1) %,
τ2 = 1/γ2 = (3.8 ± 0.3) ns, and b = (4.0 ± 0.1) %; (c) triexponential model, Eq. (S18) with
τ1 = (37.4±0.9) ns, a1 = (39.2±1.5) %, τ2 = (13.4±0.4) ns, a2 = (50.9±1.4) %, τ3 = (1.4±0.1) ns, and
b = (2.7±0.1) %; (d) quadri-exponential model, Eq. (S19) with τ1 = (47.3±1.0) ns, a1 = (23.8±0.8) %,
τ2 = (17.5 ± 0.2) ns, a2 = (60.2 ± 0.7) %, τ3 = (3.3 ± 0.2) ns, a3 = (12.4 ± 0.3) %, τ4 = (0.3 ± 0.1) ns, and
b = (2.3 ± 0.1) %

Poisson-distributed around gi(θ̂) with a standard deviation of
√

gi(θ̂) if the same measure-
ment is repeated many times. Consequently, the normalized residues Ri calculated according
to Eq. (S34) for all data points of any one measurement should have an average value of µ = 0
and a standard deviation of σ = 1. Noticeably different values of µ and σ, as well as any sys-
tematic deviations from the zero-line in certain regions of the curve, indicate that the model
in question fails to fully explain the data.

Figures S7 and S8 furthermore indicate the Poisson deviances D, Eq. (S11), for each model
to provide an idea about how reduction of this statistical measure of data-model disagreement
relates to the visible improvement of the description of the data; as mentioned in the main
article, the statistical significance of the improvement achieved by adding one more decay
component, Eq. (S25), is higher than 10−12 in all cases, as a difference in D of 56 suffices
to surpass this significance threshold when comparing nested models with the likelihood-ratio
test of Section 4.4.
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7 Photon Antibunching in Single-QD Emission

As discussed in the main article, a decisive criterion for the observation of a single emitter is
the detection of luminescence antibunching: The number of photon coincidences at lag time
τ = 0 is less than half of the limiting value at long times, which is an unambiguous signature
of single-photon emission and proves that the signal does indeed originate from an individual
emitter; Fig. S9 shows examples of this phenomenon for AO- and halide capped NCs. We
systematically confirmed the presence of this antibunching dip (or the equivalent phenomenon
under pulsed excitation) for the single-QD data that we present in the present work.
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Figure S9: Antibunching in the photoluminescence emission of individual NCs: Photon coincidence
histograms (filled dots) were measured with a two-detector Hanbury Brown – Twiss setup under
continuous-wave excitation and fitted with the monoexponential model described in Section 4.2.3 (solid
lines, including convolution with instrumental response). (a) OA-capped NC, τrise = (30.2 ± 2.4) ns;
(b) halide-capped NC, τrise = (42.3 ± 4.2) ns.
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