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1 Phase cycle for dynamical decoupling measurements 
 

Table S1 represents the phase cycles employed for the dynamical decoupling (DD) 

measurements1,2 as briefly described in Section 4.2 of the main text. The phase cycles of the 

individual pulses are nested and the order runs from left to right, meaning that the phase of the 

first pulse is cycled first. Table S1 relies on a x, (x) and [x] notation, which specifies that a pulse 

is subject to a 360°, 180° and 90° cycle, respectively. This corresponds to the [(+x)], [(+x) (-x)] 

and [(+x) (+y) (-x) (-y)] representation in the main text. Finally, the detection coefficient in Table 

S1 indicates whether the individual echo intensity is added (+1) or subtracted (-1) to generate the 

overall signal. This coefficient can be determined for each phase cycle element by multiplying 

the sign of the employed pulse phase as specified in the main text, i.e. [+(+x)-(-x)] for the first 

π/2 pulse, [+(+x)-(+y)+(-x)-(-y)] and for the penultimate pulse [+(+x)+(-x)]. 
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Table S1 Short-hand representation of the DD phase cycle. x, (x) and [x] indicate that a pulse 

is cycled in steps of 360°, 180° and 90°, respectively. The individual phase cycles are nested 

from left to right and the detection coefficient determines whether each element is added (+1) or 

subtracted (-1).  

Experiment Pulse phases Detection coefficient 

n = 1 (x)x +1, -1 

n = 2 (x)(x)x +1, -1, +1, -1 

n = 3 (x)[x](x)x +1, -1, -1, +1, +1, -1, -1, +1, +1, -1, -1, +1, +1, -1, -1, +1 

n = 4 (x)[x][x](x)x +1, -1, -1, +1, +1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, 

+1, -1, -1, +1, +1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, 

+1, -1, -1, +1, +1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, 

+1, -1, -1, +1, +1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1 

n = 5 (x)[x][x][x](x)x +1, -1, -1, +1, +1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, 

+1, -1, -1, +1, +1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, 

-1, +1, +1, -1, -1, +1, +1, -1, +1, -1, -1, +1, +1, -1, -1, +1, 

-1, +1, +1, -1, -1, +1, +1, -1, +1, -1, -1, +1, +1, -1, -1, +1, 

+1, -1, -1, +1, +1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, 

+1, -1, -1, +1, +1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, 

-1, +1, +1, -1, -1, +1, +1, -1, +1, -1, -1, +1, +1, -1, -1, +1, 

-1, +1, +1, -1, -1, +1, +1, -1, +1, -1, -1, +1, +1, -1, -1, +1, 

+1, -1, -1, +1, +1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, 

+1, -1, -1, +1, +1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, 

-1, +1, +1, -1, -1, +1, +1, -1, +1, -1, -1, +1, +1, -1, -1, +1, 

-1, +1, +1, -1, -1, +1, +1, -1, +1, -1, -1, +1, +1, -1, -1, +1, 

+1, -1, -1, +1, +1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, 

+1, -1, -1, +1, +1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, 

-1, +1, +1, -1, -1, +1, +1, -1, +1, -1, -1, +1, +1, -1, -1, +1, 

-1, +1, +1, -1, -1, +1, +1, -1, +1, -1, -1, +1, +1, -1, -1, +1 

 

2 Regularized noise spectroscopy 

2.1 Impact of electronic noise 

The regularized noise spectroscopy approach was tested by generating DDNS input χ = -ln(W) 

from a series of simulated noise spectra S. Upon adding white noise N of amplitude N to model 

an experimental decoherence vector W’ = W+N, noise spectrum reconstruction failed to obtain 

the true underlying S even for a very small noise amplitude N = 0.001 which corresponds to a 

standard deviation of 2.9·10-4 (Fig. S1). This observation arises from the logarithmized 

decoherence vector that enters the regularization expression (equation (3), main text) as input 

with 𝛘 = − ln(𝑾 + 𝑵) =  𝝌 −  ln(1 + 𝑵 𝑾⁄ ) . Therefore, the deviation of χ’ from χ depends on 

both N and W. More specifically, χ’ converges to –ln(N) according to 

 𝝌′ =  − ln(𝑵 + 𝑾) =  − ln(𝑁) − ln (1 +  
𝑾

𝑵
) (S1) 

as the second summand approaches zero (Fig. S1(b), (d)). Modeling W with the SE expression 

demonstrates that the time point T at which the noise amplitude dominates the tail of W depends 

on Tm, ξ and N (Fig. S1(b), (d)). For this reason, experimental DD data cannot serve as input to 
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regularization-based DDNS, and a functional decoherence description is needed instead. We 

apply adaptive wavelet denoising to obtain W by fitting W’ to the SE or SSE (equation (4), main 

text) model, which serve as a low-pass filter. The applied fitting procedure is described in the SI 

of 2.   

 

 

 

 

Fig. S1 Influence of electronic noise in the detected EPR signal onto DDNS. Two simulated 

decoherence vectors W (red) modelled using the SE expression with Tm = 15 µs, (a) ξ = 2 and (c) 

ξ = 1. The corresponding W’ (blue) is obtained after adding white noise with amplitude N = 

0.001. (b) Logarithmic representation for ξ = 2, where the –ln(N) level (black, dashed) is shown. 

The second summand of equation (S1) (black, solid) converges towards zero. (d) Same 

representation for ξ = 1. 

 

2.2 Determining the accessible frequency range 

As described in the main text the experimental decoherence vector W’ determines the accessible 

frequency range of the noise spectrum extending from ωmin to ωmax. The first and last detectable 

element W’1 = W’(T1) and W’nT = W’(TnT) define ωmax and ωmin, respectively through the kernel 

matrix elements F1,j and FnT,j. A Gaussian fit (with mean µ and standard deviation σ) to the main 

band pass feature defines ωmax = µ+3σ (Fig. S2) and ωmin = µ-3σ (Fig. S3). This procedure 

underestimates ωmin for the Hahn experiment (Fig. S3(b), black circle), and it is advantageous to 

determine ωmin(n = 1) from extrapolation (Fig. S3(b), black star) of a polynomial fit to ωmin(n = 

2-5).  
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Fig. S2 Maximal accessible frequency range (ωmax) for DDNS determined from filter 

functions. (a) Kernel matrix elements (blue) for the shortest considered sequence length T1 = 1 

µs to illustrate how ωmax is determined. A Gaussian fit (red) with mean µ and standard deviation 

σ to the main band pass feature of the filter kernel element determines ωmax = µ + 3σ, (b) 

resulting in a ωmax dependence on n for T1 = 1 µs.  
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Fig. S3 Minimal accessible frequency range (ωmin) for DDNS determined from filter 

functions. (a) Kernel matrix elements (blue) for an exemplary value of TnT = 100 µs. A 

Gaussian fit (red) with mean µ and standard deviation σ to the main band pass feature of the 

filter kernel element determines ωmin = µ - 3σ, (b) resulting in a ωmin dependence on n for TnT = 

100 µs. This approach underestimates ωmin for the Hahn experiment (black circle), instead 

polynomial extrapolation to ωmin(n = 1) is used (black star). 
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All noise spectra models presented in the main text were obtained from regularized DDNS using 

a logarithmically spaced frequency vector. For low temperature DD data sets (at 40 K) the 

determined Smed and SIQR overlap with solutions obtained from regularized DDNS  with a linear 

distribution of nω elements across the frequency range (ωmin-ωmax). At intermediate (80 K) and 

high (298 K) temperatures the two approaches lead to noise spectra that differ in their width, as 

illustrated for 20 µM H-mNOHex in OTP at 80 K (Fig. S4). This deviation is likely to arise from 

different weighting of the noise spectra contribution at higher frequencies for a log(ω) and linear 

ω vector. In the latter case, a second peak is visible in the noise spectra for n = 1-3 that appears 

due to spectral leakage away from the main pass band of the filter function (e.g. see filter kernel 

component beyond Gaussian fit in Fig. S2-3). 

 

 

Fig. S4 Case of deviation between DDNS results obtained with linear and logarithmic ω 

axis. Experiment-specific noise spectra for 20 µM H-mNOHex in OTP at 80 K using a linear 

(blue) and logarithmic (orange) nω distribution of 500 points per 10 MHz of ωmax-ωmin.  

 

2.3 DDNS-based decoherence description 

The main text includes an illustrative example for the agreement of the DDNS-based 

decoherence description with the experimental DD traces of 20 µM D-mNOHex in dOTP at 40 

K (Fig. 3). Figures S5 and S6 show the DDNS-based decoherence description for all other o-

terphenyl and Fig. S7 for the water-glycerol noise spectra. 
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Fig. S5 DDNS-based decoherence description for nitroxides in o-terphenyl glass at 40 K. 
Measured decoherence (black) for DD experiments with n = 1-5 for (a) 20 uM H-mNOHex in 

OTP and dOTP and (b) 100 µM H-mNOHex in OTP and dOTP. The initial signal oscillation 

stems from nuclear modulation. DDNS using the SSE parameterization (colored, dashed line) 

generate a set of experiment-specific noise spectra. The median noise spectrum Smed and the 

associated interquartile range SIQR (see Fig. 4(a)-(b)) provide a global DDNS-based decoherence 

description using exp(-F·Smed) (colored, solid line) and exp(-F·SIQR) (colored, shaded area). Note 

the legend on top. 
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Fig. S6 DDNS-based decoherence description for nitroxides in o-terphenyl glass at 40, 80 

and 298 K. Measured decoherence (black) for DD experiments with n = 1-5 for (a) 20 uM D-

mNOHex in dOTP at 40 K and (b) 20 µM H-mNOHex in OTP at 80 and 298 K. The initial 

signal oscillation stems from nuclear modulation. DDNS using the SSE parameterization 

(colored, dashed line) generate a set of experiment-specific noise spectra. The median noise 

spectrum Smed and the associated interquartile range SIQR (see Fig. 4(a)-(b) at 40 K and Fig. 6(b) 

for 80 and 298 K) provide a global DDNS-based decoherence description using exp(-F·Smed) 

(colored, solid line) and exp(-F·SIQR) (colored, shaded area). Note the legend on top. 
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Fig. S7 DDNS-based decoherence description for nitroxides in o-terphenyl glass at 40 K. 

Measured decoherence (black) for DD experiments with n = 1-5 for (a) 10 uM H-mNOPEG in 

H2O:glycerol and D2O:glycerol-d8 and (b) 10 uM D-mNOPEG in H2O:glycerol and 

D2O:glycerol-d8. The initial signal oscillation stems from nuclear modulation. DDNS using the 

SSE parameterization (colored, dashed line) generate a set of experiment-specific noise spectra. 

The median noise spectrum Smed and the associated interquartile range SIQR (see Fig. 5(a)-(b)) 

provide a global DDNS-based decoherence description using exp(-F·Smed) (colored, solid line) 

and exp(-F·SIQR) (colored, shaded area). Note the legend on top. 

 

 

 

 

 



10 

 

3 Static solid-state 1H NMR spectra 
 

 
Fig. S8 Background correction of static solid-state 1H NMR spectra. Static solid-state 1H 

NMR solid echo spectra of H2O:glycerol and OTP in the absence of radical (a) before and (b) 

after subtraction of the background spectrum, acquired at 14.1 T and 100 K.  For background 

subtraction, the spectral intensities were normalized to the same number of scans. 
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4 Tunnel ESEEM simulations 

4.1 2pESEEM/Hahn sequence 

 
Fig. S9 Two-pulse ESEEM simulations. Simulated electron spin coherence under the two-pulse 

ESEEM/Hahn experiment by density operator formalism for a nitroxide featuring (a, c) 

protonated and deuterated (b, d) methyl groups. Absolute (a-b) and normalized (c-d) two-pulse 

ESEEM traces obtained after powder averaging over 31 orientations as a function of tunnel 

frequency νt. (a-b) show individual contributions from the four methyl groups (color code see 

inset) along with the averaged trace (black), displayed after normalization in (c-d). For 

deuterated methyl groups the nuclear quadrupole interaction was taken into account with νNQ = 

200 kHz.  
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4.2 CP n = 2-4 sequence 

 

 
Figure S10. Tunnel frequency estimation from DD measurements with CP n = 1-4. DD 

measurements (for n = 1 to 4 from left to right) of 10 µM H-mNOPEG in (a) H2O:glycerol and 

(b) D2O:glycerol-d8 at 40 K (blue). The tunnel frequency is obtained from fits (red) with the 

product of the background function WBG, modelled by an SE expression with c = 1, (black, 

dashed) and the simulated νt-dependent quantum rotor ESEEM under the Hahn, CP n = 2, 3 or 4 

experiment (black, solid). Determined νt and WBG parameters Tm and ξ  (a) Hahn: νt = 275 kHz, 

Tm = 4.8 µs and ξ = 2.80, CP n = 2: νt = 250 kHz, Tm = 12.0 µs and ξ = 3.85, CP n = 3: νt = 325 

kHz, Tm = 16.2 µs and ξ = 2.45 and CP n = 4: νt = 225 kHz, Tm = 21.8 µs and ξ = 3.25. (b) Hahn: 

νt = 225 kHz, Tm = 15.6 µs and ξ = 1.35, CP n = 2: νt = 275 kHz, Tm = 29.6 µs and ξ = 1.80, CP n 

= 3: νt = 275 kHz, Tm = 42.4 µs and ξ = 1.70 and CP n = 4: νt = 200 kHz, Tm = 49.0 µs and ξ = 

1.50. 
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