Supporting Information

Molecular Magnetism in Nanodomains of Isoreticular MIL-88(Fe)-MOFs

Sheeba Dawood,^a Surabhi Shaji,^b Gayani Pathiraja,^a Yirong Mo, ^{a*}and Hemali Rathnayake^{a*}

^aDepartment of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 East Gate City Blvd, Greensboro, NC 27401

^bDepartment of Mechanical Engineering, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411

KEYWORDS. Molecular magnetism, Isoreticular MOFs, Superparamagnetic, MIL-88, MIL-126, Fe^{III}-MOFs.

Elemental transition	Energy (eV)	Chemical & oxidation states	% Weight (Experimental)	% Weight (Experiment
peak				al)
MIL-88B				
C 1s	283.42 &	С-С, С-О-С	41.41	41.54
	286.23			
Ols	530.19	Fe-O-C	32.73	32.28
Fe 2p	710.83,	Fe ⁺² & Fe ⁺³	24.77	24.14
2p _{3/2} & 2p _{1/2}	715.53			
1 1	723.78			
		MIL-88C		
C1s	284.54 &	C-C, O-C=O	50.89	50.86
	287.37			
Ols	530.28	Fe-O-C	27.05	26.35
Fe 2p	710.83,			
-	715.53,	Fe ⁺² & Fe ⁺³	20.17	19.71
2p _{3/2} & 2p _{1/2}	723.78			
MIL-126				
C1s	284.54 &	C-C, O-C=O	50.89	50.86
	287.37			
Ols	530.28	Fe-O-C	27.05	26.35
Fe 2p	710.83,	Fe ⁺² & Fe ⁺³	20.17	19.71
-	715.53,			
2p _{3/2} & 2p _{1/2}	723.78			

Table 1: XPS survey analysis and elemental compositions and binding energies of each elements for all three MIL-88 analogues

Figure S1: The binding energy O 1s spectra for all three analogues of MIL-88 analogues.

Figure S2: Thermal stabilities of all three analogues of MIL-88.

Figure S3: (a) The isotherms of MIL-88B, MIL-88C, and MIL-126; (b) The BJH pore distributions for MIL-88(Fe)-MOFs

Figure S4. The thicknesses of the core and the shell are found to be \sim 138 nm and \sim 47.5 nm for MIL-88B and 169.8 nm and 17.3 nm for MIL-88C, respectively (Figure S4).

Figure S5: M-H loops for three MIL-88(Fe) MOFs at 10 K.