ARTICLE

Appendix A. Supplementary material

Table S1. Experimental LLE data for DMSO (1)-aromatics (2)-decane (3) ternary system (mass fraction) at 30 °C under atmospheric pressure.^a

DMSO phase decane phase				V	V		
W ₁₁	W ₁₂	W ₁₃	W ₂₁	W ₂₂	W ₂₃	- Kar	Kal
		DMS	60 (1) + <i>o</i> -xyle	ne (2) + decan	e (3)		
0.9979	0.0000	0.0021	0.0053	0.0000	0.9947	_	_
0.9650	0.0261	0.0089	0.0074	0.0737	0.9189	0.3537	0.0097
0.9060	0.0826	0.0114	0.0120	0.2103	0.7777	0.3927	0.0147
0.8464	0.1390	0.0146	0.0167	0.3349	0.6484	0.4150	0.0226
0.7818	0.2004	0.0179	0.0314	0.4466	0.5220	0.4486	0.0342
0.7090	0.2670	0.0240	0.0586	0.5415	0.3999	0.4932	0.0599
0.6458	0.3153	0.0389	0.0786	0.5807	0.3407	0.5430	0.1140
0.6122	0.3427	0.0451	0.0876	0.5929	0.3196	0.5780	0.1412
		DMS	60 (1) + <i>m</i> -xyle	ne (2) + decan	ie (3)		
0.9979	0.0000	0.0021	0.0053	0.0000	0.9947	_	-
0.9721	0.0211	0.0069	0.0080	0.0762	0.9157	0.2761	0.0075
0.9264	0.0660	0.0077	0.0134	0.2197	0.7669	0.3002	0.0100
0.8696	0.1184	0.0119	0.0222	0.3431	0.6347	0.3452	0.0188
0.8114	0.1713	0.0172	0.0346	0.4559	0.5095	0.3758	0.0338
0.7451	0.2315	0.0234	0.0556	0.5511	0.3933	0.4200	0.0596
0.6901	0.2759	0.0341	0.0728	0.5885	0.3387	0.4687	0.1006
0.6502	0.3037	0.0461	0.0790	0.6045	0.3164	0.5024	0.1457
		DMS	60 (1) + <i>p</i> -xyle	ne (2) + decan	e (3)		
0.9979	0.0000	0.0021	0.0053	0.0000	0.9947	_	_
0.9729	0.0204	0.0067	0.0057	0.0788	0.9155	0.2590	0.0074
0.9263	0.0649	0.0087	0.0096	0.2213	0.7691	0.2934	0.0114
0.8729	0.1145	0.0126	0.0141	0.3468	0.6391	0.3302	0.0196
0.8212	0.1650	0.0138	0.0280	0.4602	0.5118	0.3585	0.0270
0.7637	0.2200	0.0163	0.0485	0.5558	0.3957	0.3958	0.0413
0.7262	0.2537	0.0200	0.0664	0.5970	0.3366	0.4250	0.0595
0.7012	0.2721	0.0267	0.0730	0.6104	0.3166	0.4458	0.0844
		DMSO	(1) + ethylben	zene (2) + dec	ane (3)		
0.9979	0.0000	0.0021	0.0053	0.0000	0.9947	_	_
0.9695	0.0248	0.0057	0.0076	0.0/4/	0.91//	0.3327	0.0062
0.91/6	0.0750	0.0074	0.0135	0.2133	0.7/33	0.3515	0.0096
0.8544	0.1349	0.0107	0.0169	0.3356	0.6475	0.4020	0.0165
0./91/	0.1942	0.0141	0.0318	0.4497	0.5185	0.4318	0.0272
0./193	0.2605	0.0202	0.0577	0.5428	0.3995	0.4799	0.0506
0.6/32	0.3016	0.0251	0.0785	0.5/8/	0.3428	0.5212	0.0734
0.6544	0.3184	0.0273	0.0898	0.5926	0.3176	0.5373	0.0858

a Model oils were prepared using a Sartorius BSA124S analytical balance (d=0.1 mg). The standard uncertainties: u(T) = 0.05 °C, u(p) = 0.1 MPa.

ARTICLE

Table S2. The fitting parameters a, b, and corresponding linear regression coefficients R^2 of Othmer-Tobias equation for DMSOaromatics-decane experimental data.

LLE	а	b	R ²
DMSO (1) + <i>o</i> -xylene (2) + decane (3)	0.9324	-1.174	0.9984
DMSO (1) + m -xylene (2) + decane (3)	0.9067	-1.4062	0.9994
DMSO (1) + p -xylene (2) + decane (3)	0.8778	-1.508	0.9993
DMSO (1) + ethylbenzene (2) + decane (3)	0.9185	-1.2897	0.9994

Table S3. Interaction energies (kJ/mol) of stationary interaction dimers calculated at M06-2X/6-311++g(d, p) level.

	<i>o</i> -xylene	<i>m</i> -xylene	<i>p</i> -xylene	ethylbenzene
DMSO	-37.7982	-32.3148	-30.3056	-32.7752
decane	-29.6358	-31.6450	-30.1800	-30.0544
decane(DMSO)	-21.8316	-23.2202	-20.5230	-21.0035

Table S4. AIM topological analysis properties at (3,-1) BCP of aromatics-DMSO dimers.

	Bond paths	ρ(r)/a.u.	$ abla^2 ho(\mathbf{r})/a.u.$	Distance/Å	<i>H</i> (r)/a.u.	<i>E</i> _H (kJ/mol)
	C ₁₁ -H ₁₂ ····O ₁₉ (58)	0.0131	0.0413	2.350	>0	-2.18
	C ₁₅ -H ₁₆ ····O ₁₉ (62)	0.0129	0.0436	2.306	>0	-2.14
o-xylene/Diviso	C₄····H ₂₃ -C ₂₀ (41)	0.0066	0.0194	2.810		
	C ₂ ····H ₂₅ -C ₂₄ (45)	0.0073	0.0250	2.800	>0	-0.89
	C ₁₁ -H ₁₄ …O ₁₉ (60)	0.0122	0.0407	2.348	>0	-1.98
<i>m</i> -xylene/DMSO	C ₂ ····S ₂₈ (49)	0.0081	0.0264	3.283		
	C₄····H ₂₁ -C ₂₀ (50)	0.0077	0.0257	2.721	>0	-0.98
	C ₁₁ -H ₁₃ …O ₁₉ (58)	0.0131	0.0417	2.348	>0	-2.18
n vulana (DMCO	C ₅ …O ₁₉ (52)	0.0071	0.0232	3.225		
p-xylene/Diviso	C ₅ …H ₂₅ -C ₂₄ (41)	0.0074	0.0255	2.782	>0	-0.91
	C ₆ ⋯H ₂₃ -C ₂₀ (50)	0.0064	0.0193	2.833		
	C ₁₅ -H ₁₇ ···O ₁₉ (60)	0.0097	0.0367	2.443	>0	-1.42
	C ₁₂ -H ₁₃ ····O ₁₉ (59)	0.0097	0.0354	2.561	>0	-1.42
ethybenzene/DMSO	C ₃ …O ₁₉ (54)	0.0071	0.0223	3.262		
	C ₂ …H ₂₃ -C ₂₀ (37)	0.0058	0.0170	2.876		
	C₃⋯H₂₅-C₂₄(47)	0.0075	0.0256	2.771	>0	-0.93

ARTICLE

	Bond paths	<i>ρ</i> (r)/a.u.	$ abla^2 ho(r)/a.u.$	Distance/Å
	C ₆ ····H ₂₈ -C ₂₆ (93)	0.0057	0.0168	2.920
	C ₁ …H ₃₁ -C ₂₉ (82)	0.0065	0.0194	2.907
	C ₂ ····H ₃₃ -C ₃₂ (95)	0.0062	0.0202	2.966
	C ₃ …H ₃₇ -C ₃₅ (120)	0.0053	0.0161	3.052
o-xylene/decane	C ₁₅ -H ₁₆ ⋯H ₃₇ -C ₃₅ (77)	0.0065	0.0223	2.276
	C ₁₁ -H ₁₂ ····H ₃₇ -C ₃₅ (86)	0.0066	0.0232	2.309
	C ₁₁ -H ₁₂ ····H ₄₃ -C ₄₁ (89)	0.0062	0.0218	2.311
	C ₃ …H ₃₉ -C ₃₈ (102)	0.0060	0.0185	2.904
	C ₁₁ ····H ₃₉ -C ₃₈ (99)	0.0058	0.0212	2.877
	C ₁₅ -H ₁₈ ····H ₄₈ -C ₄₇ (92)	0.0050	0.0176	2.531
	C ₁₅ -H ₁₈ ····H ₄₆ -C ₄₄ (79)	0.0055	0.0199	2.459
	C ₁₅ -H ₁₆ ····H ₄₂ -C ₄₁ (93)	0.0053	0.0187	2.477
	C ₁ …H ₄₂ -C ₄₁ (88)	0.0059	0.0179	2.950
	C ₆ ····H ₄₆ −C ₄₄ (73)	0.0055	0.0163	2.943
<i>m</i> -xylene/decane	C ₆ ····H ₄₀ −C ₃₈ (69)	0.0060	0.0195	2.912
	C ₂ ····H ₄₀ -C ₃₈ (78)	0.0061	0.0196	2.974
	C₃····H₃₅-C₃₅(86)	0.0060	0.0178	2.963
	C ₃ ····H ₃₄ -C ₃₂ (70)	0.0059	0.0176	2.943
	C ₁₁ -H ₁₃ ····H ₃₀ -C ₂₉ (84)	0.0055	0.0193	2.526
	C ₁₁ ····H ₄₈ -C ₄₇ (84)	0.0058	0.0215	2.870
	C ₁₁ -H ₁₃ ····H ₄₆ -C ₄₄ (93)	0.0050	0.0184	2.455
	C₅…H₄6-C₄₄(83)	0.0059	0.0175	2.912
	C ₁ …H ₄₂ -C ₄₁ (79)	0.0064	0.0203	2.864
p-xylene/decane	C ₄ …H ₄₀ -C ₃₈ (81)	0.0070	0.0215	2.805
	C ₃ ····H ₃₆ -C ₃₅ (76)	0.0066	0.0218	2.800
	C ₄ -H ₉ ····H ₃₄ -C ₃₂ (71)	0.0032	0.0101	2.695
	C ₁₅ -H ₁₈ ····H ₃₄ -C ₃₂ (72)	0.0044	0.0153	2.547
	C ₁₅ -H ₁₈ ····H ₃₀ -C ₂₉ (73)	0.0046	0.0158	2.522
	C ₁₅ -H ₁₈ ····H ₂₅ -C ₂₃ (99)	0.0060	0.0211	2.325
	C ₁₅ -H ₁₈ ····H ₂₇ -C ₂₆ (103)	0.0056	0.0204	2.583
	C ₁₅ -H ₁₈ ····H ₃₀ -C ₂₉ (98)	0.0065	0.0228	2.312
	C ₁₂ -H ₁₄ ····H ₂₇ -C ₂₆ (102)	0.0071	0.0250	2.257
the honzer - / de	C ₁₂ -H ₁₄ ····H ₃₄ -C ₃₂ (95)	0.0072	0.0254	2.237
eurypenzene/aecane	C ₃ ····H ₃₀ -C ₂₉ (101)	0.0055	0.0158	2.962
	C₄····H ₃₄ -C ₃₂ (97)	0.0054	0.0162	3.034
	C ₆ ····H ₃₆ -C ₃₅ (89)	0.0063	0.0207	2.908
	C ₆ ⋯H ₄₀ -C ₃₈ (88)	0.0061	0.0182	2.942
	C ₆ ····H ₄₂ -C ₄₁ (86)	0.0056	0.0166	2.953

Table S5. AIM topological analysis properties at (3,-1) BCP of aromatics-decane dimers

Table S6. Contribution percentage of the energy decomposition derived dispersion, electrostatic, and induction attractive effects within aromatics-DMSO dimers at SAPT2+(3) δ MP2/aug-cc-pVTZ level.

	Attraction		
_	E _{dis} %	E _{elst} %	E _{ind} %
o-xylene/DMSO	49.57	37.83	12.60
<i>m</i> -xylene/DMSO	50.52	37.21	12.27
p-xylene/DMSO	53.14	35.57	11.29
ethylbenzene/DMSO	53.30	35.49	11.21

Table S7. Contribution percentage of the energy decomposition derived dispersion, electrostatic, and induction attractive effects within aromatics-decane dimers at SAPT2+(3) δ MP2/aug-cc-pVTZ level.

	Attraction		
_	E _{dis} %	E _{elst} %	E _{ind} %
o-xylene/decane	70.89	23.42	5.69
<i>m</i> -xylene/decane	70.93	23.91	5.16
<i>p</i> -xylene/decane	70.56	24.29	5.15
ethylbenzene/decane	70.41	23.79	5.80