Supporting Information

Mechanisms of Melatonin Binding and Destabilizing Protofilament

and Filament of Tau R3-R4 Domains Revealed by Molecular

Dynamics Simulation

Lili Zhu,^a Yehong Gong,^b Hao Lju,^a Gongwu Sun,^a Qingwen Zhang,^b and Zhenyu Qian^{*a} ^aKey Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China

^bCollege of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China

*Correspondence: <u>qianzhenyu@sus.edu.cn</u>

The H-bond number with D-H-A angle set to 120 degrees is shown in Table S1. The weakening of the angle geometry criterion increases the number of H-bonds. Still, the numerical relationship of different systems remains unchanged, and the ratio of H-bond number between the systems using 120 or 150 degrees is very close.

The 2D frequency diagram as a function of centroid distance and dihedral of paired rings in π - π stacking is shown in Fig. S1. It reveals that Y310 has a higher frequency to form π - π stacking with benzene ring of Mel compared with pyrrole ring in Tetramer+Mel system, and has almost the same frequency to stack with benzene or pyrrole ring in Octamer+Mel system. As for F378, the frequency to form π - π stacking with pyrrole ring are higher than benzene ring in both tetramer and octamer, especially for the ring pairs with a smaller centroid distance. The increase of dihedral angle will greatly reduce the strength of π - π stacking interaction, and the strict distance constraint in the main text already implies the restricted orientation range of the stacking ring pairs.

System	D-H-A angle	MC-MC	SC-SC	Tau-Mel
Tetramer	120°	226.8	68.7	
	150°	144.2	49.4	
Tetramer+Mel	120°	225.7	71.4	55.9
	150°	147.5	52.0	43.2
Octamer	120°	450.2	149.9	
	150°	286.5	111.6	
Octamer+Mel	120°	449.7	150.5	90.3
	150°	296.4	111.9	68.8

Table S1 The comparison of H-bond numbers with different D-H-A angles

Fig. S1 2D frequency diagram as a function of centroid distance and dihedral of paired rings in π - π stacking.