Supporting Information for High efficient T-shape deep-red thermally activated delayed fluorescence emitter: substitution position effect

Kai Zhang, Jianzhong Fan, Chuan-Kui Wang*, Lili Lin*

Shandong Province Key Laboratory of Medical Physics and Image Processing

Technology, School of Physics and Electronics, Shandong Normal University,

250014 Jinan, China.

Corresponding Author

* Author to whom correspondence should be addressed.

E-mail: ckwang@sdnu.edu.cn and linll@sdnu.edu.cn.

Figure S1. ONIOM model to simulate the aggregation in crystal state for oTPA-DPPZ (a) and pTPA-DPPZ(b). 60 molecular model named as Model-1, 120 molecular model named as Model-2, 200 molecular model named as Model-3.

Figure S2. Geometry comparisons between of OTPA-DPPZ and pTPA-DPPZ in Model-1 (black), Model-2 (red) and Model-3 (green).

Figure S3. Adiabatic excitation energies for *o*TPA-DPPZ and *p*TPA-DPPZ in Model-1, Model-2 and Model-3.

Figure S4. Transition characteristics of *o*TPA-DPPZ and *p*TPA-DPPZ in Model-1, Model-2 and Model-3.

Figure S5. Diagrammatic illustration of selected normal modes with large reorganization energies (λ) for S₀ of *o*TPA-DPPZ (a) and *p*TPA-DPPZ (b) in crystal.

Table	S1.	The	emission	wavelength	and	oscillator	strength	of of	OTPA-	-DPPZ	and
pTPA-	DPP	Z in	Model-1,	Model-2 and	l Mo	del-3.					

	0	TPA-DPP	Z	pTPA-DPPZ			
	Model-1	Model-2	Model-3	Model-1	Model-2	Model-3	
λ _{em} (nm)	639	637	637	669	670	669	
f	0.105	0.106	0.106	0.144	0.144	0.144	

		SOC (cm ⁻¹)	μ (Debye)	$\frac{K_{rt}}{(s^{-1})}$	<i>K_{nrt}</i> (s ⁻¹)
oTPA- DPPZ	T_1 - S_0	0.437	1.92×10-4	3.01×10-2	5.62×10 ⁰
pTPA- DPPZ	T_1 - S_0	0.472	2.32×10-4	2.74×10 ⁻²	4.56×10 ²

Table S2. Calculated SOC constants and transition dipole moments, radiative (K_{rt}) and non-radiative rates (K_{nrt}) from T_1 to S_0 .

Table S3. Frequencies of each mode ω_j , normal-mode displacement (ΔQ), Huang-Rhys factors (S_j) and reorganization energy (λ) for S₀ of *o*TPA-DPPZ and *p*TPA-DPPZ in crystal.

		pTPA-DPPZ							
mode	$\omega_j(\text{cm}^{-1})$	ΔQ	S_j	λ_j (meV)	mode	$\omega_j(\text{cm}^{-1})$	ΔQ	$\mathbf{S}_{\mathbf{j}}$	λ_j (meV)
6	44.51	-94.03	0.90	39.91	6	49.62	-16.75	0.03	1.57
13	78.07	-59.31	0.63	48.84	13	75.46	-0.66	0.00	0.00
14	82.57	-60.01	0.68	55.92	14	76.76	0.41	0.00	0.00
16	86.87	-45.09	0.40	34.95	16	80.91	-23.57	0.10	8.29
17	87.86	52.23	0.55	47.98	17	81.89	7.54	0.01	0.87
43	307.78	-16.90	0.20	61.61	43	313.65	-5.74	0.02	7.39