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I. The derivation of MDE in the nonorthogonal coordinate sys-

tem

In this section, we concentrate on the derivation of modified diffusion equation (MDE) for a

wormlike chain in the nonorthogonal coordinates by means of the Chapman-Kolmogorov equa-

tion, which is commonly utilized to determine the probability density for the perspective of the

stochastic process closely related to the Brownian motion.

Assuming the Markov property for the propagator in an external field w(x, s), we can write

q(x,u, s + ∆s)

=e−∆s w(x,s)
∫

d(∆x)
∫

d(∆u)Ψ(∆x,∆u; x − ∆x,u − ∆u) q(x − ∆x,u − ∆u, s),
(1)

where Ψ(∆x,∆u; x − ∆x,u − ∆u) represents the conditional transition probability1 that the added

segment has the positional and orientational displacements ∆x and ∆u in the nonorthogonal coor-

dinates, propagating from the position x − ∆x with the orientation u − ∆u, due to an increment ∆s

of the contour variable. Considering the relation r = h · x resulting from the coordinate transfor-

mation, we can convert a displacement ∆r in the Cartesian coordinate to its counterpart ∆x in the

nonorthogonal coordinates and have the form

∆x = h−1∆r = h−1
∫ s+∆s

s
ds u(s) = (h−1 · u)∆s + O(∆s2). (2)

which explicitly restricts the positional displacement ∆x by ∆s and u. Followed by a shift x →

x + (h−1 · u)∆s, then, the formula (1) can be simplified further into

q
(
x + (h−1 · u)∆s,u, s + ∆s

)
e∆s w(x,s) =

∫
d(∆u)Φ(∆u; x,u − ∆u) q(x,u − ∆u, s), (3)

where the normalized probability Φ(∆u; x,u) regulated only by ∆u due to a contour step size ∆s is

2



introduced as

Ψ(∆x,∆u; x,u) = Φ(∆u; x,u) δ
(
∆x − (h−1 · u)∆s

)
. (4)

Expanding the modified Chapman-Kolmogorov equation Eq. (3) in terms of ∆s and ∆u, we

arrive at

[1 + w(x, s)] e∆s w(x,s) q(x,u, s) + e∆s w(x,s)
{
∆s∇xq

(
x + (h−1 · u)∆s,u, s + ∆s

)
·G · (h−1 · u)

+ ∆s
∂q

(
x + (h−1 · u)∆s,u, s + ∆s

)
∂s

+ O(∆s2)
}

=q(x,u, s) − ∇u ·
[⟨∆u⟩Φq(x,u, s)

]
+

1
2!
∇u∇u :

[⟨∆u∆u⟩Φq(x,u, s)
]
+ O(⟨∆u∆u∆u⟩Φ)

(5)

where ∇x and ∇u denotes the gradient with respect to variables x and u, and the metric matrix

G = h⊺h is introduced. <>Φ represents the integral with respect to the transition probability

density Φ. In the coordinate system described by the nonorthogonal basis {h1,h2,h3}, in particular,

we need to carefully deal with ∇x f (x) as2

∇x f (x) =
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
f (x) ·G−1. (6)

Substituting the expression (6) into the left-hand side (LHS) of Eq. (5), with truncation error

O(∆s2), we can have

LHS =e∆s w(x,s)
{

1 + ∆s
[
∂

∂s
+ u ·

(
h−1

)⊺
·
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)⊺
+ w(x, s)

]}
q
(
x + (h−1 · u)∆s,u, s + ∆s

)
,

(7)

while the right-hand side of Eq. (5) straightforward reads1

RHS =
[
1 +

L∆s
a
∇2

u

]
q
(
x + (h−1 · u)∆s,u, s + ∆s

)
. (8)
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Replacing both sides of Eq. (5) by Eqs. (7) and (8), we can have

{
e∆s w(x,s)

[
∂

∂s
+ u ·

(
h−1

)⊺
·
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)⊺
+ w(x, s)

]}
q
(
x + (h−1 · u)∆s,u, s + ∆s

)
=

[
−
(
e∆s w(x,s) − 1

)
∆s

+
L
a
∇2

u

]
q
(
x + (h−1 · u)∆s,u, s + ∆s

)
.

(9)

After taking the continuous limit ∆s→ 0, we eventually obtain the Fokker-Planck-like MDE

∂

∂s
q(x,u, s) =

[
L
a
∇2

u − Lu ·
(
h−1

)⊺
·
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)⊺
− w(x, s)

]
q(x,u, s). (10)
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II. Armijo-Goldstein inexact line search algorithm for the opti-

mization of simulation cell

In this section, we briefly introduce the Armijo-Goldstein inexact line search algorithms that

is used to optimize the shape and size of the simulation cell. A similar algorithm was previously

utilized by Jiang et al..3

In our calculations, the steepest descent method4 is adopted to optimize the simulation cell

matrix i.e. h. Since the matrix h will be updated iteratively, we focus on the component hi j,

(i, j = 1, 2, 3) and hold the rest part of h unchanged as

∂hi j

∂t
= −η (aρ0/L)

∂F
∂hi j
, (11)

where the search direction is defined as the opposite direction of the gradient
∂F
∂hi j

. The analytical

expression of
∂F
∂hi j

is intractable so far, so we intend to numerically compute this gradient as

∂F
∂hi j
≈

F(hi j + ∆hi j) − F(hi j)
∆hi j

. (12)

The relaxation step size η is calculated by Armijo-Goldstein inexact linear search algorithm.5

The calculation can be regarded as a one-dimensional optimization problem, which is to determine

a step size η under given starting position hi j and search direction − ∂F
∂hi j

, to adequately reduces

the objective function, which is chosen as the single chain configuration part − ln Q rather than

the whole free energy F, so the computational resource of SCFT iterations can be saved highly.

However, it is usually not wise to find the precisely value of η corresponding to the minimum,

since it requires the full derivative information of the objective function in the vicinity of hi j. The

Armijo-Goldstein condition is chose because it only needs the point-wise derivative in the starting
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position hi j, by which η satisfies the conditions as

ln Q
(
hi j − η (aρ0/L)

∂F
∂hi j

)
≥ ln Q(hi j) − η ρ

∂ ln Q
∂hi j

(aρ0/L)
∂F
∂hi j
, (13)

ln Q
(
hi j − η (aρ0/L)

∂F
∂hi j

)
≤ ln Q(hi j) − η (1 − ρ) ∂ ln Q

∂hi j
(aρ0/L)

∂F
∂hi j
, (14)

where the parameter 0 < ρ < 0.5 controls the degree of how inexactly η is calculated, and the
∂ ln Q
∂hi j

is also calculated numerically. This method can be explained as the first condition (13)

ensures the decrease of the objective function, while the second (14) prevents the η from being

too small. By this method, the step size η can be adjusted automatically to improve the numerical

convergence.
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III. Recovery of the Gaussian chain model for modified diffusion

equation

The main task in the self-consistent field theory is to solve the modified diffusion equation

(MDE),

∂

∂s
q(x,u, s) =

[
L
a
∇2

u − Lu ·
(
h−1

)⊺
·
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)⊺
− w(x, s)

]
q(x,u, s), (15)

which offers the probability of finding any segment along the polymer chain in space. In this

section, we analytically verifies that Eq. (15) derived from the wormlike chain model in the limit

of L/a ≫ 1 can be reduced into the Gaussian chain MDE, which was previously obtained by Barrat

et al. in the nonorthogonal simulation cell.6

In the current nonorthogonal coordinate system, the segment direction vector u is also con-

strained to be |u| = 1. Then, the spherical harmonics basis Ym
ℓ (u) is used to expand the propagator

as

q(x,u, s) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

qm
ℓ (x, s)Ym

ℓ (u). (16)

Here the expansion coefficient reads

qm
ℓ (x, s) =

1
4π

∫
duYm

ℓ
∗(u)q(x,u, s), (17)

which can be obtained by using the orthogonality condition

1
4π

∫
duYm∗

ℓ (u)Ym′
ℓ′ (u) = δm′

m δ
ℓ′

ℓ , (18)

where, Ym∗
ℓ (u) is the complex conjugate to Ym

ℓ (u) and satisfies Ym∗
ℓ (u) = (−1)mY−m

ℓ (u).

The fact that Ym
l (u) is the eigenfunction of the operator ∇2

u, directly leads to

∇2
uYm
ℓ (u) = −ℓ(ℓ + 1)Ym

ℓ (u). (19)
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By virtue of Eqs. (16) and (18), Eq.(15) straightforward arrives at

∂

∂s
qm
ℓ (x, s) =

[
−ℓ(ℓ − 1)

L
a
− w(x, s)

]
qm
ℓ (x, s)

− L
4π

∫
duYm

ℓ
∗(u)

 ∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

Ym′
ℓ′ (u)u ·

(
h−1

)⊺
·
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)⊺
qm′
ℓ′ (x, s)

 . (20)

For expressing the last term at the right-hand side of Eq. (20), we aim to simplify the formula

u ·
(
h−1

)⊺
· (∂/∂x1, ∂/∂x2, ∂/∂x3)⊺qm′

ℓ′ (x, s). The unit vector u can be rewritten in the nonorthogonal

coordinates as

u = (sin θ cos ϕ, sin θ sin ϕ, cos θ) ·
(
h−1

)⊺
·


h1

h2

h3

 (21)

Then, we have

u ·
(
h−1

)⊺
·
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)⊺
qm′
ℓ′ (x, s)

=

[
(sin θ cos ϕ, sin θ sin ϕ, cos θ) ·

(
h−1

)⊺

h1

h2

h3


]
·
[ (
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
qm′
ℓ′ (x, s) ·G−1 ·


h1

h2

h3


]⊺

= (sin θ cos ϕ, sin θ sin ϕ, cos θ) ·
(
h−1

)⊺
·
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)⊺
qm′
ℓ′ (x, s).

(22)

where the definition of the metric tensor G ≡ h⊺h is introduced. Further, applying the the recur-

rence formulas7

Ym′
ℓ′ (θ, ϕ) cos θ =

√
(ℓ′ − m′ + 1)(ℓ′ + m′ + 1)

(2ℓ′ + 1)(2ℓ′ + 3)
Ym′
ℓ′+1(θ, ϕ) +

√
(ℓ′ − m′)(ℓ′ + m′)
(2ℓ′ − 1)(2ℓ′ + 1)

Ym′
ℓ′−1(θ, ϕ),

Ym′
ℓ′ (θ, ϕ) sin θe±iϕ = ∓

√
(ℓ′ ± m′ + 1)(ℓ′ ± m′ + 2)

(2ℓ′ + 1)(2ℓ′ + 3)
Ym′±1
ℓ′+1 (θ, ϕ) ±

√
(ℓ′ ∓ m′)(ℓ′ ∓ m′ − 1)

(2ℓ′ − 1)(2ℓ′ + 1)
Ym′±1
ℓ′−1 (θ, ϕ),

(23)
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the last term at the right-hand side of Eq. (20) can be explicitly expressed as

− L
4π

∫
duYm

ℓ
∗(u)

 ∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

Ym′
ℓ′ (u)u ·

(
h−1

)⊺
·
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)⊺
qm′
ℓ′ (x, s)


=

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

(
X1(m′, ℓ′), X2(m′, ℓ′), X3(m′, ℓ′)

)
·
(
h−1

)⊺
·
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)⊺
qm′
ℓ′ (x, s),

(24)

where we have

X1(m′, ℓ′) =
L
2

[
−

√
(ℓ + m + 1)(ℓ + m + 2)

(2ℓ + 1)(2ℓ + 3)
δm′

m−1δ
ℓ′

ℓ−1 +

√
(ℓ − m + 1)(ℓ − m + 2)

(2ℓ + 1)(2ℓ + 3)
δm′

m+1δ
ℓ′

ℓ−1

+

√
(ℓ − m)(ℓ − m − 1)

(2ℓ − 1)(2ℓ + 1)
δm′

m−1δ
ℓ′

ℓ+1 −

√
(ℓ + m)(ℓ + m − 1)

(2ℓ − 1)(2ℓ + 1)
δm′

m+1δ
ℓ′

ℓ+1

]
,

X2(m′, ℓ′) =
L
2i

[
−

√
(ℓ + m + 1)(ℓ + m + 2)

(2ℓ + 1)(2ℓ + 3)
δm′

m−1δ
ℓ′

ℓ−1 −

√
(ℓ − m + 1)(ℓ − m + 2)

(2ℓ + 1)(2ℓ + 3)
δm′

m+1δ
ℓ′

ℓ−1

+

√
(ℓ − m)(ℓ − m − 1)

(2ℓ − 1)(2ℓ + 1)
δm′

m−1δ
ℓ′

ℓ+1 +

√
(ℓ + m)(ℓ + m − 1)

(2ℓ − 1)(2ℓ + 1)
δm′

m+1δ
ℓ′

ℓ+1

]
,

X3(m′, ℓ′) = L
[√

(ℓ − m + 1)(ℓ + m + 1)
(2ℓ + 1)(2ℓ + 3)

δm′
m δ
ℓ′

ℓ−1 +

√
(ℓ − m)(ℓ + m)

(2ℓ − 1)(2ℓ + 1)
δm′

m δ
ℓ′

ℓ+1

]

Substituting Eq.(24) into Eq.(20) and then comparing the terms related to the ℓth and (ℓ − 1)th

ranks, we can straightforward draw a conclusion that the leading order of magnitude of qm
ℓ (x, s)

satisfies

qm
ℓ (x, s) ∝ O

(a
L

)ℓ
(25)

which indicates, in the limit of L/a ≫ 1 we concern here, the propagator q(x,u, s) in Eq. (16)

exhibits a rapid decay on the orientational dependence for the high-rank expansion. In order to

make a direct comparison to the modified diffusion equation based on the Gaussian chain model,
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in particular, we focus on the leading term with ℓ = 0 in Eq. (20)

∂

∂s
q0

0(x, s) = −w(x, s)q0
0(x, s) −

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

L
√

6

(
(δℓ

′

1 δ
m′
−1 − δℓ

′

1 δ
m′
1 ), −i(δℓ

′

1 δ
m′
−1 + δ

ℓ′

1 δ
m′
1 ),
√

2δℓ
′

1 δ
m′
0

)
·
(
h−1

)⊺
·
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)⊺
qm′
ℓ′ (x, s),

(26)

According to Eq.(25), the left-hand side has an order

∂

∂s
q0

0(x, s) ∝ O
(a
L

)0
. (27)

This implies that the terms on the order O (a/L)0 ∼ 1 at the right-hand side of Eq. (26) will be

kept, if one expects to recover the Gaussian-chain-based MDE. Correspondingly, it also turns out

w(x, s) ∝ O
(a
L

)0
. (28)

To retain the terms with the same order from the right-hand side of Eq. (26), we need another

equation set, taken from Eq. (20) with ℓ = 1, to complete the derivation. For m = −1, 0, 1, we have

∂

∂s
qm

1 (x, s) = −
(
w(x, s) +

2L
a

)
qm

1 (x, s) − L
∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

(
Y1(m′, ℓ′),Y2(m′, ℓ′),Y3(m′, ℓ′)

)
·

(
h−1

)⊺
·
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)⊺
qm′
ℓ′ (x, s) + O

(a
L

)2
,

(29)

where

Y1(m′, ℓ′) =
1
2

√−m(1 − m)
3

δℓ
′

0 δ
m′
m+1 −

√
m(1 + m)

3
δℓ
′

0 δ
m′
m−1

 ,
Y2(m′, ℓ′) =

1
2i

−√
−m(1 − m)

3
δℓ
′

0 δ
m′
m+1 −

√
m(1 + m)

3
δℓ
′

0 δ
m′
m−1

 ,
Y3(m′, ℓ′) =

√
(1 − m)(1 + m)

3
δℓ
′

0 δ
m′
m .
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We notice that the term at the left-hand side of Eq. (29) has an order O (a/L)1, beyond which the

terms at the right-hand side will be discarded. More explicitly, the equation set reads

2
a

q0
1(x, s) = −

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

√
1
3

(
0, 0, δℓ

′

0 δ
m′
0

)
·
(
h−1

)⊺
·
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)⊺
qm′
ℓ′ (x, s) + O

(a
L

)2
,

2
a

q1
1(x, s) =

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

√
1
6

(
δℓ
′

0 δ
m′
0 , −iδℓ

′

0 δ
m′
0 , 0

)
·
(
h−1

)⊺
·
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)⊺
qm′
ℓ′ (x, s) + O

(a
L

)2
,

2
a

q−1
1 (x, s) =

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

√
1
6

(
− δℓ′0 δm′

0 , −iδℓ
′

0 δ
m′
0 , 0

)
·
(
h−1

)⊺
·
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)⊺
qm′
ℓ′ (x, s) + O

(a
L

)2
.

(30)

Substituting Eq. (30) into Eq. (26), we eventually obtain a closed equation for ℓ = 0

∂

∂s
q0

0(x, s) = − w(x, s)q0
0(x, s)

+

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
· h−1 · La

6
·
[(

h−1
)⊺
·
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)⊺
q0

0(x, s)
]
,

(31)

where we use the following relations to attain the
La
6

as the common coefficient of h1,h2 and h3,

La
6
= − L

−√
1
6

h1 − i

√
1
6

h2

 · √1
6

h1 − i

√
1
6

h2

 · a
2

= − L

√1
6

h1 − i

√
1
6

h2

 · −√
1
6

h1 − i

√
1
6

h2

 · a
2

= − L

√
1
3

h3 ·
−√

1
3

h3

 · a
2

(32)

Eq. (31) can further be rewritten in the component-wise version as

∂

∂s
q0

0(x, s) = −w(x, s)q0
0(x, s) +

La
6

3∑
i, j=1

G−1
i j

∂2q0
0(x, s)
∂xi∂x j

. (33)

where the metric matrix G = h⊺h is used.

The diffusion-like equation Eq. (33) exactly recovers the Gaussian-chain-based MDE in the

nonorthogonal coordinates, which was previously derived by Barrat et al.6 Note, the prefactor
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La/6 before the second term at the right-hand side of Eq. (33) is closely related to R2
g, the square

radius of gyration. This explicitly manifests that for the wormlike chain model, in the flexible limit

L/a ≫ 1,
√

La/6 ∼ Rg inevitably becomes the characteristic length to measure the length scale of

flexible polymer chain systems.
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IV. The enhancement of the perpendicular alignment to the in-

terface for the more rigid chains

For the lamellar phase under tensile deformation, the systems with a higher chain rigidity tends

to enhance the orientational alignment perpendicular to the interface than the flexible chains, and

in this section the numerical evidence is presented.

We can calculate the orientational probability distribution of the specific segment sint at inter-

face for lamellae as

P(s = sint, cos θ) =
∫

dz q(z, θ, s = sint)q†(z, θ, s = sint) (34)

which represents the probability of finding the joint segment for a given orientation θ in the whole

space. As well known, owing to incompatibility between components A and B, diblock copolymers

prefer to be aligned perpendicular to the interface, which directly indicates the probability P(s =

sint, cos θ = 1) is predominant. In order to evaluate the perpendicular orientation affected by the

tensile stress, we define a ratio

P̃(s = sint, cos θ = 1) =
PExtension(s = sint, cos θ = 1)
PStress-Free(s = sint, cos θ = 1)

. (35)

As shown in Fig. S1, for any chain persistency L/a, P̃(s = sint, cos θ = 1) > 1 is always hold,

indicating the tensile stress preferentially forces the orientational alignment of segments perpen-

dicular to the interface. Further, a monotonic increase of P̃(s = sint, cos θ = 1) with decreasing

L/a reveals that more rigid chains profoundly tend to exhibit a more perpendicular alignment, in

contrast to the flexible chains.

13



Figure S1: The probability ratio P̃(s = sint, cos θ = 1) as the function of chain persistency L/a for
a given tensile stress Vσ/(nkBT ) = 0.95.
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V. Crossover to the Gaussian-chain limit in shear stress-strain

relations of cylindroids

Figure S2: The stress-strain curve of cylinders applied by the shear stress along the directions (a)
σxy and (b) σyx for the Gaussian chain (GSC) and the flexible wormlike chain (L/a = 100) with
χN = 23, f = 9/23.
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VI. The orientational angle of the cylindriods with the shear

strain

Figure S3: The orientational angle β of the cylindriods as the function of the shear strain γ for
various value of chain persistency L/a = 1, 2, 3, 5, 10. The parameters used here are the same as
ones in Fig. 5 of the main text. β is defined as the angle that the long axis of the cylindriods makes
with the y-axis,8 as shown in the inset. The β ∼ γ relation affected by the purely affine deformation
is also shown as a dashed line in figure.
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