
Dipolar pathways in dipolar EPR spectroscopy

- Supplementary Information -
Luis Fábregas-Ibáñez , Maxx H. Tessmer , Gunnar Jeschke , and Stefan
Stoll

 ETH Zurich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
 University of Washington, Department of Chemistry, Seattle, WA 98195, USA

This supplementary information and all associated datasets can be downloaded from the following
Zenodo repository:

https://doi.org/10.5281/zenodo.5516807

All Python scripts were written and run with DeerLab v0.14.0 in Python 3.8-3.9

TABLE OF CONTENTS:

1. Experiments on MBP
• 1.1. Sample preparation
• 1.2. Equipment
• 1.3. Pulse configuration
• 1.4. 4-pulse DEER experiments
• 1.5. Analysis of the 4-pulse DEER datasets

▪ Table S1: Fit results and fitted model parameters of the 4-pulse DEER MBP datasets
▪ Figure S1: Results of the global analysis of the MBP 4-pulse DEER measurements
▪ Figure S2: Globally fitted (non-parametric) distance distribution

• 1.6. Effects of insufficient dipolar pathways in the 4-pulse DEER model
▪ Figure S3: Effects of insufficient dipolar pathways in the 4-pulse DEER model on the MBP

dataset analysis
• 1.6. 5-pulse DEER experiments
• 1.7. Analysis of the 5-pulse DEER datasets

▪ Table S2: Fit results and fitted model parameters of the 5-pulse DEER MBP datasets
▪ Figure S4: Results of the global analysis of the MBP 5-pulse DEER measurements
▪ Figure S5: Globally fitted (non-parametric) distance distribution

• 1.6. Effects of insufficient dipolar pathways in the 5-pulse DEER model
▪ Figure S6: Effects of insufficient dipolar pathways in the 5-pulse DEER model on the MBP

dataset analysis
2. Experiments on an oligoPPE

• 2.1. Sample
• 2.2. Equipment

1 2 1
2

1

2

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2022

https://doi.org/10.5281/zenodo.5516807
https://doi.org/10.5281/zenodo.5516807

• 2.3. Configuration
• 2.4. Analysis of the 4-pulse DEER datasets

▪ Table S3: Fit results and fitted model parameters of the 4-pulse DEER oligoPPE datasets
▪ Figure S7: Results of the global analysis of the oligoPPE 4-pulse DEER measurements
▪ Figure S8: Fitted orientation selection probability distributions
▪ Figure S9: Globally fitted (parametric) distance distribution

• 2.5. Effects of insufficient dipolar pathways in the model
▪ Figure S10: Effects of insufficient dipolar pathways in the model on the oligoPPE dataset

analysis
3. Experiments on a WALP23 mutant

• 3.1. About
• 3.2. Analysis of the 5-pulse DEER datasets

▪ Table S4: Fit results and fitted model parameters of the 5-pulse DEER WALP23 datasets
▪ Figure S11: Results of the global analysis of the WALP23 5-pulse DEER measurements
▪ Figure S12: Globally fitted (non-parametric) distance distribution

• 3.3. Effects of insufficient dipolar pathways in the model
▪ Figure S13: Effects of insufficient dipolar pathways in the model on the WALP23 dataset

analysis
4. Experiments on TEMPOL

• 4.1. Equipment
• 4.2. Reverse 5-pulse DEER measurements
• 4.3. Analysis of the 5-pulse DEER datasets

▪ Figure S14: Results of the analysis of the TEMPOL 5-pulse DEER measurements

Auxiliary functions

These Python function are used in and shared by (most of) the analyses of the experimental datasets.

import numpy as np
import deerlab as dl
import matplotlib.pyplot as plt
%matplotlib inline
%config InlineBackend.figure_format = 'svg'

Define colors
blue = '#648fffff'
yellow = '#ffb000ff'
magenta = '#dc267fff'
violet = '#785ef0ff'
emerald = '#28ac9f'

Define color scheme for DEER pathways
colors_4pdeer = [blue, magenta, violet, emerald]
colors_5pdeer = [blue, yellow, violet, magenta, emerald]

--
def outliers_mask(Vexp,Vi,factor=5,method='gradient'):

"""
 Create a mask to isolate outlier datapoints arising from moving pump pulse echos.
 """

if method=='gradient':
mask = abs(np.gradient(Vexp))>dl.noiselevel(Vi)**0.5/factor

else:
std = factor*dl.noiselevel(Vi)
mask = ((Vi>std) | (Vi<-std))
Remove also 4 points around those to ensure all influence of the crossing echoes are removed
iskip = -1
for i in range(len(t)):

if i<iskip:
continue

if mask[i]:
mask[i-3:i]=True
if i<len(t)-3:

mask[i+1:i+3]=True
iskip=i+3

return mask
--

--
def get_experimental_taus(descriptor,experiment='4pdeer'):

"""
 Extract the pulse delays used by the 4-pulse and 5-pulse DEER experiments
 from the PulseSPEL script contained in the BES3T formatted descriptor files.
 """

def getdelay(variable):
"""Get the value assigned to a variable in the PulseSPEL definition."""
Extract the PulseSPEL script from the descriptor
PulseSPEL = descriptor['DSL']['ftEpr']['PlsSPELGlbTxt']
Read script line by line
for line in PulseSPEL.split('\\n'):

Only analyze the line if the sought variable is in it
if variable in line:

Split words
words = line.split(' ')
Get value assigned to variable
index = [i for i,x in enumerate(words) if x==variable][0]
index += 1
while words[index]=='' or words[index]=='=':

4-pulse DEER: deadtime=d3, tau1=d1, tau2=d2
return getdelay('d3'),getdelay('d1'),getdelay('d2')

elif experiment == '5pdeer':
5-pulse DEER: deadtime=d3, tau1=d1, tau2=d2, tau3=d11
return getdelay('d3'),getdelay('d1'),getdelay('d2'),getdelay('d11')

--

--
def display_pathway_analysis(Pfit,ts,Vs,Vfits,masks,lams_list,reftimes_list,concs,experiment

"""
 Display the results of the multi-pathway analysis. Shows the experimental datasets with their fit.
 contributions from the individual dipolar pathways.
 """

ndatasets = int(len(Vs))
n = 0

Color schemes of the dipolar pathways, as shown in the manuscript
if experiment=='4pdeer':

colors = colors_4pdeer
elif experiment=='5pdeer':

colors = colors_5pdeer

for Vfit,t,Vexp,mask in zip(Vfits,ts,Vs,masks):

Plotting logic
n+=1
if n==1:

m = 1 # Start plotting on third row
else:

m += 1 # Move to next subplot

Plot the experimental datasets and the fit
plt.subplot(3,ndatasets,m)
plt.plot(t[mask],Vexp[mask],'.',color='grey',label='data')
plt.plot(t[~mask],Vexp[~mask],'.',color='grey',alpha=0.2,label='data')
plt.xlabel('t [μs]')
plt.ylabel('V(t)')
plt.plot(t,Vfit,'b',label='fit',linewidth=2)
plt.ylim([0.98*np.min(Vfit),1.02*np.max(Vfit)])
if n==1:

Add legend only to first subplot
plt.legend(frameon=False)

if n<len(Vs)+1:
Add titles only to top row
plt.title(f'Dataset #{n}')

lams = lams_list[n-1]
reftimes = reftimes_list[n-1]
conc = concs[n-1]

Get the fitted unmodulated contribution
Lam0 = 1-np.sum(lams)
Get the globally fitted distance distribution
Pfit = Pfit/np.trapz(Pfit,r)
Compute the fitted intermolecular contribution
pathways = np.array([[lams[i-1],reftimes[i-1]] if i>0 else [Lam0] for i in range
Vinter = dl.dipolarbackground(t,pathways,lambda t,lam: dl.bg_hom3d(t,conc,lam

1. Experiments on MBP

1.1 Sample prepration

Cysteine mutations were introduced to pETM11 plasmid encoding histidine tagged maltodextrin binding
protein (MalE) as previously described (Liu and Naismith) using Phusion high fidelity polymerase (New
England Biolabs). Site directed mutation products were transformed into NEB Turbo Escherichia coli (New
England Biolabs), purified using the QIAprep kit (Qiagen) and verified by double strand sequencing
(Genewiz). Validated double cysteine mutants were transformed into chemically competent BL21 (DE3) E.
coli (New England Biolabs). Protein expression was performed in LB Broth (Invitrogen) supplemented with
50 μg/ml kanamycin (Gibco). At approximately OD600 = 0.5 the protein expression was induced with 0.5
mM Isopropyl β-d-1-thiogalactopyranoside (IPTG) and allowed to express for 3 hours at 37 C. After
expression, cells were centrifuged and stored at -80 °C until purification. Cell pellets were resuspended in
25 ml lysis buffer (20 mM Tris, 150 mM NaCl, 20 mM imidazole, 0.5 mM Phenylmethylsulfonyl fluoride, pH
7.5). Cells were lysed on ice using a Thermo scientific 550 sonic dismembrator. Lysates were clarified by
centrifugation (25,000 X g, 45 min, 4 C) and supernatants were applied to 2.5 ml HisPur Ni-NTA resin
(Thermo Fischer Scientific). The resin was washed 3 times with 20 mL wash buffer (20 mM Tris, 150 mM
NaCl, 30 mM imidazole, pH 7.5) and eluted with 15 mL Elution buffer (20 mM Tris, 150 mM NaCl, 150 mM
imidazole, pH 7.5). A fraction of the eluant was spin labeled by incubating overnight with tenfold excess
1-Oxyl-2,2,5,5-tetramethylpyrroline-3- methyl methanethiosulfonate (MTSL, Santa Cruz Biotechnology).
Spin label protein was buffer exchanged by repeated concentration and dilutions using an Amicon Ultra-4
centrifugal filter (30 kDacutoff) and 20 mM Tris, 150 mM NaCl, 20% glycerol buffer at pH 7.5. Final EPR
samples were diluted to 50 μM protein in the same buffer made with deuterium oxide and D8 Glycerol
(Cambridge isotope laboratories). The EPR samples were shipped overseas. Finally, 40 μL of solution were
filled into a 2.95 mm (o.d) EPR tubes.

1.2 Equipment

The pulsed EPR experiments were performed at Q-band on a commercial spectrometer (Bruker ElexSysII

plt.tight_layout()
if saveas is not None:

plt.savefig(saveas)
plt.show()

--

E580) equipped with a 200 W travelling wave tube (TWT) amplifier and a homebuilt resonator suitable for
3 mm o.d. sample tubes. A helium flow cryostat (ER 4118 CF, Oxford Instruments) was used to adjust and
stabilize the measurement temperature at 50 K.

1.3 Pulse configuration

The following configurations of the probe and pump pulses were used for the acquisition of the different
4-pulse and 5-pulse DEER datasets:

Dataset Probe Freq. Pump Freq.

#1 33.490 GHz 33.590 GHz 12 ns 26 ns 20 ns

#2 33.515 GHz 33.565 GHz 12 ns 28 ns 22 ns

#3 33.520 GHz 33.560 GHz 12 ns 20 ns 12 ns

#4 33.525 GHz 33.555 GHz 16 ns 24 ns 12 ns

#5 33.530 GHz 33.550 GHz 12 ns 12 ns 12 ns

For each dataset, the same pulses were used for both the 4-pulse and 5-pulse DEER experiments.

1.4 4-pulse DEER experiments

Using the pulses defined above the 4-pulse DEER experiment was performed according to the sequence:

 - - - - - - - -echo

with set to 400 ns and set to 3000 ns. The dipolar time was swept in 8ns steps and a (+x,-x) phase
cycle was used.

1.5 Analysis of 4-pulse DEER datasets

(π/2)probe (π)probe (π/2)pump

(π/2)probe [τ1] (π)probe [t] (π)pump [τ1 + τ2 − t] (π)probe [τ2]

τ1 τ2 t

==
LOADING & PRE-PROCESSING
==

Files containing the 4-pulse DEER data
path = './data/MBP_50K_Qband/'
files = [

"MBP_50K_4pDEER_100MHz_offset.DTA",
"MBP_50K_4pDEER_50MHz_offset.DTA",
"MBP_50K_4pDEER_40MHz_offset.DTA",
"MBP_50K_4pDEER_30MHz_offset.DTA",
"MBP_50K_4pDEER_20MHz_offset.DTA",

]

Preallocate containers
Vs,ts,masks,tau1s,tau2s = [],[],[],[],[]
for n,file in enumerate(files):

Load the file
t,Vexp,descriptor = dl.deerload(path+file, full_output=True)

Get the experimental delays
t0,tau1,tau2 = get_experimental_taus(descriptor,experiment='4pdeer')
tau1s.append(tau1)
tau2s.append(tau2)
t = t + t0

Normalize the dataset
Vexp /= np.max(Vexp)

Pre-processing
Vexp,Vi,_ = dl.correctphase(Vexp,full_output=True)

if n>0:
Determine points affected by crossing echoes
mask = ~outliers_mask(Vexp,Vi,factor=6)

else:
Use the full signal
mask = Vexp<1e99

Add data to list
Vs.append(Vexp)
ts.append(t)
masks.append(mask)

Table S1 : Fit results and fitted model parameters of the 4-pulse DEER MBP datasets

Goodness-of-fit:
========= ============= ============ ======= ===========
 Dataset Noise level Reduced �2 RMSD AIC
========= ============= ============ ======= ===========
 #1 0.011 0.836 0.009 -3956.847
 #2 0.005 1.245 0.006 -4388.628
 #3 0.006 1.819 0.008 -4097.428
 #4 0.005 1.119 0.005 -4434.813
 #5 0.016 1.858 0.021 -3277.485
========= ============= ============ ======= ===========
Model parameters:
=========== ========= ========================= ======= =============================
=========
 Parameter Value 95%-Confidence interval Units Description
=========== ========= ========================= ======= =============================
=========
 lam1_1 0.345 (0.334,0.358) Amplitude of pathway #1
 reftime1 0.409 (0.407,0.412) μs Refocusing time of pathway #
1
 lam23_1 0.032 (0.026,0.038) Amplitude of pathway #2

Distance vector
r = np.linspace(2,6,150)

Vmodels = []
for t,tau1,tau2 in zip(ts,tau1s,tau2s):

Construct information on the pathways-refocusing times based on experiment
experimentInfo = dl.ex_4pdeer(tau1,tau2)
Construct the dipolar signal model
Vmodel = dl.dipolarmodel(t,r,npathways=4,experiment=experimentInfo)
The amplitudes of pathways #3 and #4 must be equal
Vmodel = dl.link(Vmodel,lam23 = ['lam2','lam3'])
Freeze the refocusing times at the theoretical values
Vmodels.append(Vmodel)

Create a global model
Vglobal = dl.merge(*Vmodels,addweights=True)
Make the spin concentration and distance distribution global to all submodels
Vglobal = dl.link(Vglobal,

conc=['conc_1','conc_2','conc_3','conc_4','conc_5'],
reftime1 = ['reftime1_1','reftime1_2','reftime1_3','reftime1_4','reftime1_5'
reftime2 = ['reftime2_1','reftime2_2','reftime2_3','reftime2_4','reftime2_5'
reftime3 = ['reftime3_1','reftime3_2','reftime3_3','reftime3_4','reftime3_5'
reftime4 = ['reftime4_1','reftime4_2','reftime4_3','reftime4_4','reftime4_5'
P=['P_1','P_2','P_3','P_4','P_5'])

Vglobal.conc.set(lb=40, ub=500, par0=80)

Include edges in the regularization operator
L = dl.regoperator(r,2,includeedges=True)

Fit all experiments datasets to the global model
results = dl.fit(Vglobal,Vs,regop=L, mask=masks, bootstrap=500, regparamrange=[1e-3,1e0

lams_list = [[getattr(results,f'lam1_{n+1}'), getattr(results,f'lam23_{n+1}'), getattr
reftimes_list = [[getattr(results,f'reftime1'), getattr(results,f'reftime2'), getattr
concs = [results.conc for n in range(len(Vs))]

print(results)

 reftime2 3.394 (3.364,3.436) μs Refocusing time of pathway #
2
 reftime3 -0.031 (-0.077,0.026) μs Refocusing time of pathway #
3
 lam4_1 0.007 (0.002,0.010) Amplitude of pathway #4
 reftime4 2.954 (2.944,2.962) μs Refocusing time of pathway #
4
 conc 120.801 (98.727,142.782) μM Spin concentration
 weight_1 0.972 (0.953,0.990) None Weighting factor
 lam1_2 0.185 (0.179,0.191) Amplitude of pathway #1
 lam23_2 0.031 (0.027,0.036) Amplitude of pathway #2
 lam4_2 0.008 (0.005,0.010) Amplitude of pathway #4
 weight_2 0.982 (0.961,1.007) None Weighting factor
 lam1_3 0.145 (0.142,0.148) Amplitude of pathway #1
 lam23_3 0.039 (0.036,0.042) Amplitude of pathway #2
 lam4_3 0.054 (0.050,0.058) Amplitude of pathway #4
 weight_3 1.045 (1.021,1.070) None Weighting factor
 lam1_4 0.081 (0.079,0.083) Amplitude of pathway #1
 lam23_4 0.027 (0.025,0.029) Amplitude of pathway #2
 lam4_4 0.035 (0.034,0.037) Amplitude of pathway #4
 weight_4 0.990 (0.968,1.018) None Weighting factor
 lam1_5 0.065 (0.056,0.074) Amplitude of pathway #1
 lam23_5 0.068 (0.061,0.074) Amplitude of pathway #2
 lam4_5 0.181 (0.174,0.192) Amplitude of pathway #4
 weight_5 1.004 (0.989,1.021) None Weighting factor
 P ... (...,...) None Non-parametric distance dist
ribution
=========== ========= ========================= ======= =============================
=========

Figure S1 : Results of the global analysis of the MBP 4-pulse DEER measurements

Figure S2 : Globally fitted (non-parametric) distance distribution

plt.figure(figsize=[20,12])
display_pathway_analysis(results.P,ts,Vs,results.model,masks,lams_list,reftimes_list,

1.6. Effects of insufficient dipolar pathways in the 4-pulse DEER model

This script exemplifies the effects in the fit of the data and in the resulting distance distribution when
modelling the 4-pulse DEER signals with an insufficient number of dipolar pathways.

Figure S3 : Effects of insufficient dipolar pathways in the 4-pulse DEER model on the
MBP dataset analysis

Pfit = results.P
scale = np.trapz(Pfit,r)
Pfit = Pfit/scale
Plot the fitted global distance distribution
plt.plot(r,Pfit,color='b')
Plot the uncertainty of the distance distribution
Pci95 = results.PUncert.ci(95)/scale
Pci50 = results.PUncert.ci(50)/scale
plt.fill_between(r,Pci50[:,0],Pci50[:,1],alpha=0.3,color='b')
plt.fill_between(r,Pci95[:,0],Pci95[:,1],alpha=0.2,color='b')
plt.xlabel('r (nm)')
plt.ylabel('$P(r)$ (nm$^{-1}$)')
plt.tight_layout()
plt.show()

maxpaths = [1,2,3,4]
plt.figure(figsize=[15,18])
for n,npathways in enumerate(maxpaths):

Interspin vector distances
r = np.linspace(2,6,150)

Vmodels = []
for t,tau1,tau2 in zip(ts,tau1s,tau2s):

Construct information on the pathways-refocusing times based on experiment
experimentInfo = dl.ex_4pdeer(tau1,tau2)
Construct the dipolar signal model
Vmodel = dl.dipolarmodel(t,r,npathways=npathways,experiment=experimentInfo)

Vmodels.append(Vmodel)

Create a global model
Vglobal = dl.merge(*Vmodels,addweights=True)
Make the spin concentration and distance distribution global to all submodels
Vglobal = dl.link(Vglobal,

conc=['conc_1','conc_2','conc_3','conc_4','conc_5'],
P=['P_1','P_2','P_3','P_4','P_4','P_5'])

if npathways==1:
Vglobal = dl.link(Vglobal,**{f'reftime': [f'reftime_1',f'reftime_2',f'reftime_3'

else:
for i in range(npathways):

Vglobal = dl.link(Vglobal,**{f'reftime{i+1}': [f'reftime{i+1}_1',f'reftime

Vglobal.conc.set(lb=40, ub=500, par0=80)

Include edges in the regularization operator
L = dl.regoperator(r,2,includeedges=True)

Fit all experiments datasets to the global model
npathsresult = dl.fit(Vglobal,Vs,regop=L, mask=masks, regparamrange=[1e-3,1e0], nonlin_tol

Pfit = npathsresult.P/np.trapz(npathsresult.P,r)

for j in range(5):
plt.subplot(6,len(maxpaths),n+1+j*len(maxpaths))
plt.plot(ts[j][masks[j]],Vs[j][masks[j]],'.',color='gray')
plt.plot(ts[j],npathsresult.model[j],'b')
plt.legend(['data','fit'])
plt.xlabel('t [μs]')
plt.ylabel('V(t)/V0')
if j==0:

plt.title(f'{n+1} dipolar pathway(s)')

Plot the globally fitted non-parametric distance distribution
plt.subplot(6,len(maxpaths),n+1+5*len(maxpaths))
plt.plot(r,Pfit,'b')
plt.xlabel('r [nm]')
plt.ylabel('P(r) [nm$^{-1}$]')
plt.xlim([min(r),max(r)])

plt.tight_layout()
plt.show()

1.7 5-pulse DEER experiments

Using the pulses defined above the 4-pulse DEER experiment was performed according to the sequence:

 - - - - - - - - - -echo

with set to 1800 ns, set to 2300 ns and set to 200 ns. The dipolar time was swept in 8ns steps
and a (+x,-x) phase cycle was used.

1.8 Analysis of 5-pulse DEER datasets

(π/2)probe [τ1] (π)probe [τ1 + τ2 − t] (π)pump [t] (π)probe [τ3] (π)pump [τ2 − τ3]

τ1 τ2 τ3 t

==
LOADING & PRE-PROCESSING
==

Files containing the 5-pulse DEER data
path = './data/MBP_50K_Qband/'
files = [

"MBP_50K_5pDEER_100MHz_offset.DTA",
"MBP_50K_5pDEER_50MHz_offset.DTA",
"MBP_50K_5pDEER_40MHz_offset.DTA",
"MBP_50K_5pDEER_30MHz_offset.DTA",
"MBP_50K_5pDEER_20MHz_offset.DTA",

]

Preallocate containers
Vs,ts,masks,tau1s,tau2s,tau3s = [],[],[],[],[],[]
for n,file in enumerate(files):

Load the file
t,Vexp,descriptor = dl.deerload(path+file, full_output=True)

t0,tau1,tau2,tau3 = get_experimental_taus(descriptor,experiment='5pdeer')
tau1s.append(tau1)
tau2s.append(tau2)
tau3s.append(tau3)
The experiment was performed backwards, adjust time vector
t = tau1+tau2 - t - t0

Pre-processing
Vexp /= np.max(Vexp)
Vexp,Vi,_ = dl.correctphase(Vexp,full_output=True)

if n>1:
Determine points affected by crossing echoes
mask = ~outliers_mask(Vexp,Vi,factor=15)

else:
Use the full signal
mask = Vexp<1e99

Add data to list
Vs.append(Vexp)
ts.append(t)
masks.append(mask)

Table S2 : Fit results and fitted model parameters of the 5-pulse DEER MBP datasets

Goodness-of-fit:
========= ============= ============ ======= ===========
 Dataset Noise level Reduced �2 RMSD AIC
========= ============= ============ ======= ===========
 #1 0.010 1.004 0.010 -4782.523
 #2 0.004 3.190 0.007 -5138.812
 #3 0.006 9.348 0.018 -4115.142
 #4 0.005 7.151 0.013 -4490.279
 #5 0.006 95.828 0.053 -3041.511
========= ============= ============ ======= ===========
Model parameters:
=========== ========= ========================= ======= =============================
=========
 Parameter Value 95%-Confidence interval Units Description
=========== ========= ========================= ======= =============================
=========
 lam1_1 0.252 (0.239,0.268) Amplitude of pathway #1
 reftime1 0.178 (0.171,0.184) μs Refocusing time of pathway #
1

Distance vector
r = np.linspace(2,6,150)

Vmodels = []
for t,tau1,tau2,tau3 in zip(ts,tau1s,tau2s,tau3s):

Construct information on the pathways-refocusing times based on experiment
experimentInfo = dl.ex_5pdeer(tau1,tau2,tau3)
Construct the dipolar signal model
Vmodel = dl.dipolarmodel(t,r,npathways=5,experiment=experimentInfo)
The amplitudes of pathways #3 and #4 must be equal
Vmodel = dl.link(Vmodel,lam34 = ['lam3','lam4'])
Freeze the refocusing times at the theoretical values
Vmodels.append(Vmodel)

Create a global model
Vglobal = dl.merge(*Vmodels,addweights=True)
Make the spin concentration and distance distribution global to all submodels
Vglobal = dl.link(Vglobal,

conc=['conc_1','conc_2','conc_3','conc_4','conc_5'],
reftime1 = ['reftime1_1','reftime1_2','reftime1_3','reftime1_4','reftime1_5'
reftime2 = ['reftime2_1','reftime2_2','reftime2_3','reftime2_4','reftime2_5'
reftime3 = ['reftime3_1','reftime3_2','reftime3_3','reftime3_4','reftime3_5'
reftime4 = ['reftime4_1','reftime4_2','reftime4_3','reftime4_4','reftime4_5'
reftime5 = ['reftime5_1','reftime5_2','reftime5_3','reftime5_4','reftime5_5'
P=['P_1','P_2','P_3','P_4','P_4','P_5'])

Vglobal.conc.set(lb=40, ub=500, par0=80)

Include edges in the regularization operator
L = dl.regoperator(r,2,includeedges=True)

Fit all experiments datasets to the global model
results = dl.fit(Vglobal,Vs,bootstrap=500,mask=masks,regop=L,nonlin_tol=1e-3,regparamrange

lams_list = [[getattr(results,f'lam1_{n+1}'), getattr(results,f'lam2_{n+1}'), getattr
reftimes_list = [[getattr(results,f'reftime1'), getattr(results,f'reftime2'), getattr
concs = [results.conc for n in range(len(Vs))]

print(results)

 lam2_1 0.107 (0.073,0.147) Amplitude of pathway #2
 reftime2 2.274 (2.253,2.291) μs Refocusing time of pathway #
2
 lam34_1 0.043 (0.031,0.056) Amplitude of pathway #3
 reftime3 2.117 (2.007,2.195) μs Refocusing time of pathway #
3
 reftime4 1.902 (1.900,1.909) μs Refocusing time of pathway #
4
 lam5_1 0.035 (0.028,0.044) Amplitude of pathway #5
 reftime5 3.944 (3.888,3.985) μs Refocusing time of pathway #
5
 conc 131.307 (72.158,183.185) μM Spin concentration
 weight_1 1.416 (1.367,1.476) None Weighting factor
 lam1_2 0.128 (0.119,0.139) Amplitude of pathway #1
 lam2_2 0.063 (0.038,0.091) Amplitude of pathway #2
 lam34_2 0.033 (0.023,0.042) Amplitude of pathway #3
 lam5_2 0.026 (0.022,0.030) Amplitude of pathway #5
 weight_2 1.261 (1.209,1.319) None Weighting factor
 lam1_3 0.094 (0.085,0.103) Amplitude of pathway #1
 lam2_3 0.061 (0.022,0.109) Amplitude of pathway #2
 lam34_3 0.050 (0.035,0.065) Amplitude of pathway #3
 lam5_3 0.050 (0.046,0.056) Amplitude of pathway #5
 weight_3 1.181 (1.126,1.227) None Weighting factor
 lam1_4 0.040 (0.035,0.046) Amplitude of pathway #1
 lam2_4 0.042 (0.022,0.065) Amplitude of pathway #2
 lam34_4 0.028 (0.020,0.035) Amplitude of pathway #3
 lam5_4 0.035 (0.028,0.042) Amplitude of pathway #5
 weight_4 1.125 (1.085,1.176) None Weighting factor
 lam1_5 0.065 (0.045,0.080) Amplitude of pathway #1
 lam2_5 0.051 (0.006,0.103) Amplitude of pathway #2
 lam34_5 0.062 (0.042,0.082) Amplitude of pathway #3
 lam5_5 0.119 (0.089,0.147) Amplitude of pathway #5
 weight_5 0.827 (0.768,0.892) None Weighting factor
 P ... (...,...) None Non-parametric distance dist
ribution
=========== ========= ========================= ======= =============================
=========

Figure S4 : Results of the global analysis of the MBP 5-pulse DEER measurements

plt.figure(figsize=[20,12])
display_pathway_analysis(results.P,ts,Vs,results.model,masks,lams_list,reftimes_list,

Figure S5 : Globally fitted (non-parametric) distance distribution

Pfit = results.P
scale = np.trapz(Pfit,r)
Pfit = Pfit/scale
Plot the fitted global distance distribution
plt.plot(r,Pfit,color='b')
Plot the uncertainty of the distance distribution
Pci95 = results.PUncert.ci(95)/scale
Pci50 = results.PUncert.ci(50)/scale
plt.fill_between(r,Pci50[:,0],Pci50[:,1],alpha=0.3,color='b')
plt.fill_between(r,Pci95[:,0],Pci95[:,1],alpha=0.2,color='b')
plt.xlabel('r (nm)')
plt.ylabel('$P(r)$ (nm$^{-1}$)')
plt.tight_layout()
plt.show()

1.9. Effects of insufficient dipolar pathways in the 5-pulse DEER model

This script exemplifies the effects in the fit of the data and in the resulting distance distribution when
modelling the 5-pulse DEER signals with an insufficient number of dipolar pathways.

Figure S6 : Effects of insufficient dipolar pathways in the 5-pulse DEER model on the
MBP dataset analysis

maxpaths = [1,2,3,4,5]
plt.figure(figsize=[15,18])
for n,npathways in enumerate(maxpaths):

Interspin vector distances
r = np.linspace(2,6,150)

Vmodels = []
for t,tau1,tau2,tau3 in zip(ts,tau1s,tau2s,tau3s):

Construct information on the pathways-refocusing times based on experiment
experimentInfo = dl.ex_5pdeer(tau1,tau2,tau3)
Construct the dipolar signal model
Vmodel = dl.dipolarmodel(t,r,npathways=npathways,experiment=experimentInfo)

Vmodels.append(Vmodel)

Create a global model
Vglobal = dl.merge(*Vmodels,addweights=True)
Make the spin concentration and distance distribution global to all submodels
Vglobal = dl.link(Vglobal,

conc=['conc_1','conc_2','conc_3','conc_4','conc_5'],
P=['P_1','P_2','P_3','P_4','P_4','P_5'])

if npathways==1:
Vglobal = dl.link(Vglobal,**{f'reftime': [f'reftime_1',f'reftime_2',f'reftime_3'

else:
for i in range(npathways):

Vglobal = dl.link(Vglobal,**{f'reftime{i+1}': [f'reftime{i+1}_1',f'reftime

Vglobal.conc.set(lb=40, ub=500, par0=80)

Include edges in the regularization operator
L = dl.regoperator(r,2,includeedges=True)

Fit all experiments datasets to the global model
npathsresult = dl.fit(Vglobal,Vs,regop=L, mask=masks, regparamrange=[1e-3,1e0], nonlin_tol

Pfit = npathsresult.P/np.trapz(npathsresult.P,r)

for j in range(5):
plt.subplot(6,len(maxpaths),n+1+j*len(maxpaths))
plt.plot(ts[j][masks[j]],Vs[j][masks[j]],'.',color='gray')
plt.plot(ts[j],npathsresult.model[j],'b')
plt.legend(['data','fit'])
plt.xlabel('t [μs]')
plt.ylabel('V(t)/V0')
if j==0:

plt.title(f'{n+1} dipolar pathway(s)')

Plot the globally fitted non-parametric distance distribution
plt.subplot(6,len(maxpaths),n+1+5*len(maxpaths))
plt.plot(r,Pfit,'b')
plt.xlabel('r [nm]')
plt.ylabel('P(r) [nm$^{-1}$]')
plt.xlim([min(r),max(r)])

plt.tight_layout()
plt.show()

2. Experiments on an oligePPE

2.1. Sample

A pre-existing 90 μM solution of a rigid oligo(p-phenyleneethynylene) (oligoPPE) bi-radical in deuterated
o-terphenyl (dOTP) was used (see structure below). Its synthesis and preparation is reported elsewhere
(see JACS, 2010, 132, 10107–10117, DOI: 10.1021/ja102983b).

N N

O

O

O

O

N N OO

R

R

R

R

2.2 Equipment

The pulsed EPR experiments were performed at Q-band on a commercial spectrometer (Bruker ElexSysII
E580) equipped with a 200 W travelling wave tube (TWT) amplifier and a homebuilt resonator suitable for
3 mm o.d. sample tubes. A helium flow cryostat (ER 4118 CF, Oxford Instruments) was used to adjust and
stabilize the measurement temperature at 50K.

2.3 Configuration

Using the pulses defined above the 4-pulse DEER experiment was performed according to the sequence:

 - - - - - - - -echo

The dipolar time was swept in 8 ns steps and a (+x,-x) phase cycle was used with the following setups:

Dataset Probe Freq. Pump Freq.

#1 750 ns 7000 ns 34.41 GHz 34.51 MHz 16 ns 16 ns 16 ns

#2 750 ns 7000 ns 34.47 GHz 34.51 MHz 6 ns 12 ns 16 ns

#3 600 ns 3000 ns 34.41 GHz 34.51 MHz 16 ns 16 ns 16 ns

#4 600 ns 3000 ns 34.47 GHz 34.51 MHz 6 ns 12 ns 16 ns

2.4. Analysis of the 4-pulse DEER datasets

The signals were then analyzed using DeerLab 0.13.2 in Python. After loading the data, the dipolar traces
phases were optimized using the deerlab.correctphase() function. In some datasets, the presence
of moving echoes led to the appearance of spikes in the signal. To remove their influence from the
analysis they must be omitted. As the spikes appear in the imaginary part of the signal as well, we
removed any point whose imaginary value exceeded four times the estimated standard deviation of the
noise (estimated via the deerlab.noiselevel() function). As mentioned in the main text, we modelled
the experimental signals to account for all four modulated dipolar pathways of the 4-pulse DEER
experiments, orientation selection effects modeled using a phenomenological model based on a 4-point
cubic spline, and for the distance distribution modeled as a unimodal Gaussian distribution centered
about approx. 4 nm. The model was fitted to the individual data using the function
deerlab.fitparamodel() from DeerLab in Python.

To avoid issues related to some numerical properties of the model, the parameters of the orientational
distribution model were determined separately via a Monte-Carlo estimation from 10000 samples. The
values were then fixed, while all other parameters were optimized.

from IPython.display import SVG
SVG(filename='.\graphics\oligoPPE.svg')

(π/2)probe [τ1] (π)probe [t] (π)pump [τ1 + τ2 − t] (π)probe [τ2]

t

τ1 τ2 (π/2)probe (π)probe (π/2)pump

The following script was used for the full analysis of the 4-pulse DEER experimental datasets:

from scipy.interpolate import make_interp_spline

Path to folder containing experimental data
path = './data/MSA236_4pDEER_50K_Qband/'
files = [

'MSA236_biradical_4pdeer_50K_long_100MHz.DTA',
'MSA236_biradical_4pdeer_50K_long_40MHz.DTA',

]

Pre-allocate containers
Vs, ts, Vsmasked, tsmasked, tau1s, tau2s, masks = [],[],[],[],[],[],[]

Loading and pre-processing
Ndat = len(files)
for n,file in enumerate(files):

Load the experimental data
t,Vexp,descriptor = dl.deerload(path+file, full_output=True)

t0,tau1,tau2 = get_experimental_taus(descriptor,experiment='4pdeer')
tau1s.append(tau1)
tau2s.append(tau2)

Account for dead-time
t += t0
Phase correction
Vexp = Vexp/max(Vexp)
Vexp,Vi,_ = dl.correctphase(Vexp,full_output=True)

Determine points affected by crossing
if n>0:

mask = ~outliers_mask(Vexp,Vi,factor=20)
else:

mask = np.ones_like(Vexp).astype(bool)

Remove spikes due to crossing echoes
Vmasked = Vexp[mask]
tmasked = t[mask]

Add to the list of pre-processed signals
masks.append(mask)
Vs.append(Vexp)
ts.append(t)

Interspin vector distances
r = np.linspace(3.1,4.1,80)

Orientation selection distributions
def Pθ_fcn(θ,θspline,Pθspline):

Model P(θ) as a 4-point spline with zero-derivative at the edges
Pθ = make_interp_spline(θspline, Pθspline,bc_type="clamped")
return 1-Pθ(θ)

Spline parameters (determined via Monte-Carlo estimation)
θAspline = [0, 0.4, 1, np.pi/2]
PθAspline = [-0.1955177, 0.41876526, -0.55722565, -0.93222681]
PθA = lambda θ: Pθ_fcn(θ, θAspline, PθAspline)

Spline parameters (determined via Monte-Carlo estimation)
θBspline = [0, 0.4, 0.8, np.pi/2]
PθBspline = [0.0744823, -0.38123474, -0.45722565, 0.09777319]
PθB = lambda θ: Pθ_fcn(θ, θBspline, PθBspline)

Pθs = [PθA,PθB]

Vmodels = []
for t,tau1,tau2,Pθ in zip(ts,tau1s,tau2s,Pθs):

Construct information on the pathways-refocusing times based on experiment
experimentInfo = dl.ex_4pdeer(tau1,tau2)
Construct the dipolar signal model
Vmodel = dl.dipolarmodel(t, r, Pmodel=dl.dd_wormchain, npathways=4,

experiment=experimentInfo, orisel=Pθ)
The amplitudes of pathways #3 and #4 must be equal
Vmodel = dl.link(Vmodel,lam23 = ['lam2','lam3'])
Freeze the refocusing times at the theoretical values
Vmodels.append(Vmodel)

Create a global model
Vglobal = dl.merge(*Vmodels)
Make the spin concentration and distance distribution global to all submodels
Vglobal = dl.link(Vglobal,

conc=['conc_1','conc_2'],
reftime1 = ['reftime1_1','reftime1_2'],
reftime2 = ['reftime2_1','reftime2_2'],
reftime3 = ['reftime3_1','reftime3_2'],
reftime4 = ['reftime4_1','reftime4_2'],
contour=['contour_1','contour_2'],
persistence=['persistence_1','persistence_2'])

Vglobal.reftime1.freeze(Vglobal.reftime1.par0)
Vglobal.reftime2.freeze(Vglobal.reftime2.par0)
Vglobal.reftime3.freeze(Vglobal.reftime3.par0)
Vglobal.reftime4.freeze(Vglobal.reftime4.par0)
Vglobal.conc.set(lb=10, ub=500, par0=80)
Vglobal.contour.set(lb=3.00, ub=5.00, par0=4.00)
Vglobal.persistence.set(lb=0.001, ub=100, par0=19)

Fit all experiments datasets to the global model
results = dl.fit(Vglobal,Vs,mask=masks,bootstrap=500,reg=False)

Vfits = results.model
Pfit = dl.dd_wormchain(r,contour=results.contour,persistence=results.persistence)

lams_list = [[getattr(results,f'lam1_{n+1}'), getattr(results,f'lam23_{n+1}'), getattr
reftimes_list = [[getattr(results,f'reftime1'), getattr(results,f'reftime2'), getattr
concs = [results.conc for n in range(len(Vs))]

Table S3: Fit results and fitted model parameters of the 4-pulse DEER oligoPPE datasets

Goodness-of-fit:
========= ============= ============ ======= ===========
 Dataset Noise level Reduced �2 RMSD AIC
========= ============= ============ ======= ===========
 #1 0.010 1.489 0.012 -8525.817
 #2 0.005 4.810 0.011 -8605.515
========= ============= ============ ======= ===========
Model parameters:
============= ========= ========================= ======= ===========================
====
 Parameter Value 95%-Confidence interval Units Description
============= ========= ========================= ======= ===========================
====
 lam1_1 0.345 (0.344,0.346) Amplitude of pathway #1
 reftime1 0.750 (frozen) μs Refocusing time of pathway
#1
 lam23_1 0.008 (0.006,0.010) Amplitude of pathway #2
 reftime2 7.750 (frozen) μs Refocusing time of pathway
#2
 reftime3 0.000 (frozen) μs Refocusing time of pathway
#3
 lam4_1 0.001 (0.000,0.002) Amplitude of pathway #4
 reftime4 7.000 (frozen) μs Refocusing time of pathway
#4
 conc 118.747 (117.827,119.893) μM Spin concentration
 contour 4.091 (4.087,4.097) nm Contour length
 persistence 20.177 (19.566,20.555) nm Persistence length
 lam1_2 0.180 (0.175,0.182) Amplitude of pathway #1
 lam23_2 0.069 (0.066,0.073) Amplitude of pathway #2
 lam4_2 0.048 (0.045,0.050) Amplitude of pathway #4
 scale_1 2.143 (2.126,2.163) None None
 scale_2 1.315 (1.286,1.340) None None
============= ========= ========================= ======= ===========================
====

Figure S7 : Results of the global analysis of the oligoPPE 4-pulse DEER measurements

print(results)

plt.figure(figsize=[10,8])
display_pathway_analysis(Pfit,ts,Vs,Vfits,masks,lams_list,reftimes_list,concs,experiment

Figure S8 : Fitted orientation selection probability distributions

Plot the orientational distributions
for n in range(2):

θ = np.linspace(0,np.pi/2,500)
P = Pθs[n](θ)
P = P/np.trapz(P,θ)
plt.plot(θ,P)

plt.ylabel('P(θ) [rad$^{-1}$]')
plt.xlabel('Inter-spin vector orientation θ [rad]')
plt.legend(['Dataset #1','Dataset #2'])
plt.tight_layout()
plt.show()

Figure S9 : Globally fitted (parametric) distance distribution

2.5. Effects of insufficient dipolar pathways in the model

Plot the distance distributions
Pr = results.evaluate(dl.dd_wormchain,r)

plt.plot(r,Pr,'b')

plt.ylabel('P(r) [nm$^{-1}$]')
plt.xlabel('Inter-spin vector distance r [nm]')
plt.tight_layout()
plt.show()

This script exemplifies the effects in the fit of the data and in the resulting distance distribution when
modelling a 4-pulse DEER signal with an insufficient number of dipolar pathways.

Figure S10 : Effects of insufficient dipolar pathways in the model

maxpaths = [1,2,3,4]
plt.figure(figsize=[15,9])
for n,npathways in enumerate(maxpaths):

Interspin vector distances
r = np.linspace(3.1,4.1,70)

Vmodels = []
for t,tau1,tau2,Pθ in zip(ts,tau1s,tau2s,Pθs):

Construct information on the pathways-refocusing times based on experiment
experimentInfo = dl.ex_4pdeer(tau1,tau2)
Construct the dipolar signal model
Vmodel = dl.dipolarmodel(t, r, Pmodel=dl.dd_wormchain, npathways=npathways,

experiment=experimentInfo, orisel=Pθ)
Freeze the refocusing times at the theoretical values
Vmodels.append(Vmodel)

Create a global model
Vglobal = dl.merge(*Vmodels)
Make the spin concentration and distance distribution global to all submodels
Vglobal = dl.link(Vglobal,

conc=['conc_1','conc_2'],
contour=['contour_1','contour_2'],
persistence=['persistence_1','persistence_2'])

Vglobal.conc.set(lb=10, ub=500, par0=80)
Vglobal.contour.set(lb=3.00, ub=5.00, par0=4.00)
Vglobal.persistence.set(lb=0.001, ub=100, par0=19)

if npathways==1:
Vglobal = dl.link(Vglobal,**{f'reftime': [f'reftime_1',f'reftime_2']})

else:
for i in range(npathways):

Vglobal = dl.link(Vglobal,**{f'reftime{i+1}': [f'reftime{i+1}_1',f'reftime

Fit all experiments datasets to the global model
npathsresult = dl.fit(Vglobal, Vs, mask=masks, reg=False)

Pfit = dl.dd_wormchain(r,contour=npathsresult.contour,persistence=npathsresult.persistence

for j in range(2):
plt.subplot(3,len(maxpaths),n+1+j*len(maxpaths))
plt.plot(ts[j][masks[j]],Vs[j][masks[j]],'.',color='gray')
plt.plot(ts[j],npathsresult.model[j],'b')
plt.legend(['data','fit'])
plt.xlabel('t [μs]')
plt.ylabel('V(t)/V0')
if j==0:

plt.title(f'{n+1} dipolar pathway(s)')

Plot the globally fitted non-parametric distance distribution
plt.subplot(3,len(maxpaths),n+1+2*len(maxpaths))
plt.plot(r,Pfit,'b')
plt.xlabel('r [nm]')
plt.ylabel('P(r) [nm$^{-1}$]')
plt.xlim([min(r),max(r)])

plt.tight_layout()
plt.show()

3. Experiments on a WALP23 mutant

3.1 About

The 5-pulse DEER experiments were performed on a A7R1/W22R1 mutant of the membrane-inserting
peptide WALP23 by Breitgoff et al. All information concerning sample prepration and experiments were
reported by Breitgoff et al. in a past publication (Phys. Chem. Chem. Phys., 2017,19, 15766-15779).

3.2 Analysis of the 5-pulse DEER datasets

The signals were then analyzed using DeerLab 0.13.2 in Python. After loading the data, the dipolar traces
phases were optimized using the deerlab.correctphase() function. As mentioned in the main text,
we modelled the experimental signals to account for four modulated dipolar pathways of the 5-pulse
DEER experiments. To account for the relatively long pump pulses we allowed the refocusing times to vary
up to 100 ns from their theoretical values. The distance distribution was modelled as a non-parametric
distribution obtained via Tikhonov regularization with a fixed regularization parameter value of =0.05.
The nonlinear parameters and the distance distribution were fitted to the data via separable non-linear
least-squares using the function deerlab.snlls() from DeerLab in Python.

The following script was used for the full analysis of the 4-pulse DEER experimental datasets:

α

==
LOADING & PREPROCESSING
==

Path to folder containing experimental data
path = r'data\WALP_5pDEER_50K_Qband'

files = ['WALP_7_22_5pDEER_HS16_long.DTA',
'WALP_7_22_5pDEER_HS16_short.DTA']

Pulse sequence timings for all experiments
�1s = [2.0, 1.5] # μs
�2s = [2.0, 1.5] # μs
�3s = [0.7, 0.2] # μs
deadtimes = [0.1, 0.1] # μs
Pre-allocate containers
Vs, ts = [],[]

Loading and pre-processing
Ndat = len(files)

Load the first experimental datasets
t,Vexp = dl.deerload(os.path.join(path,files[0]))
Remove the signal drop at the edge of the dataset
Vexp = Vexp[50:-25]
t = t[50:-25] - np.min(t)
Add to list of datasets
ts.append(t)
Vs.append(Vexp)

Load the second experimental datasets
t,Vexp = dl.deerload(os.path.join(path,files[1]))
Extract just the first dataset
Vexp = Vexp[:,0]
t = t[0] - np.min(t[0])
Add to list of datasets
ts.append(t)
Vs.append(Vexp)

Phase correction
Vs = [dl.correctphase(V) for V in Vs]
Normalization (aesthetic)
Vs = [V/np.max(V) for V in Vs]
Deadtime shift
ts = [t + deadtime for t,deadtime in zip(ts,deadtimes)]

Table S4 : Fit results and fitted model parameters of the 5-pulse DEER WALP datasets

Goodness-of-fit:
========= ============= ============ ======= ===========
 Dataset Noise level Reduced �2 RMSD AIC
========= ============= ============ ======= ===========
 #1 0.001 4.395 0.003 -5085.304
 #2 0.004 1.270 0.004 -4023.850
========= ============= ============ ======= ===========
Model parameters:
============ ========= ========================= ======= ============================
==========
 Parameter Value 95%-Confidence interval Units Description
============ ========= ========================= ======= ============================
==========
 lam1_1 0.275 (0.272,0.277) Amplitude of pathway #1
 reftime1_1 0.648 (0.648,0.649) μs Refocusing time of pathway
#1
 lam2_1 0.073 (0.071,0.075) Amplitude of pathway #2
 reftime2_1 2.005 (2.003,2.007) μs Refocusing time of pathway
#2
 lam34_1 0.023 (0.022,0.025) Amplitude of pathway #3
 reftime3_1 1.399 (1.396,1.400) μs Refocusing time of pathway
#3
 reftime4_1 2.713 (2.708,2.718) μs Refocusing time of pathway
#4
 lam5_1 0.006 (0.004,0.008) Amplitude of pathway #5
 reftime5_1 3.394 (3.377,3.400) μs Refocusing time of pathway
#5
 conc_1 288.469 (284.800,292.564) μM Spin concentration
 lam1_2 0.289 (0.287,0.292) Amplitude of pathway #1
 reftime1_2 0.166 (0.165,0.166) μs Refocusing time of pathway

Interspin vector distances
r = np.linspace(1,4.5,90)

Vmodels = []
for t,�1,�2,�3 in zip(ts,�1s,�2s,�3s):

Construct information on the pathways-refocusing times based on experiment
experimentInfo = dl.ex_5pdeer(�1,�2,�3)
Construct the dipolar signal model
Vmodel = dl.dipolarmodel(t,r,npathways=5,experiment=experimentInfo)
The amplitudes of pathways #3 and #4 must be equal
Vmodel = dl.link(Vmodel,lam34 = ['lam3','lam4'])

Vmodels.append(Vmodel)

Create a global model
globalmodel = dl.merge(*Vmodels)

Make distance distribution global to all submodels
globalmodel = dl.link(globalmodel, P=['P_1','P_2'])

Include edges in the regularization operator
L = dl.regoperator(r,2,includeedges=False)

Fit all experiments datasets to the global model
results = dl.fit(globalmodel,Vs,bootstrap=500,regop=L,regparamrange=[1e-2,1e1])

print(results)

#1
 lam2_2 0.125 (0.122,0.127) Amplitude of pathway #2
 reftime2_2 1.457 (1.456,1.459) μs Refocusing time of pathway
#2
 lam34_2 0.007 (0.006,0.009) Amplitude of pathway #3
 reftime3_2 1.230 (1.204,1.251) μs Refocusing time of pathway
#3
 reftime4_2 1.645 (1.610,1.673) μs Refocusing time of pathway
#4
 lam5_2 0.004 (0.002,0.007) Amplitude of pathway #5
 reftime5_2 2.782 (2.734,2.838) μs Refocusing time of pathway
#5
 conc_2 254.787 (248.855,261.347) μM Spin concentration
 P ... (...,...) None Non-parametric distance dis
tribution
============ ========= ========================= ======= ============================
==========

Figure S11 : Results of the global analysis of the WALP23 5-pulse DEER measurements

lams_list = [
[results.lam1_1,results.lam2_1,results.lam34_1,results.lam34_1,results.lam5_1],
[results.lam1_2,results.lam2_2,results.lam34_2,results.lam34_2,results.lam5_2],
]

reftimes_list = [
[results.reftime1_1,results.reftime2_1,results.reftime3_1,results.reftime4_1,results
[results.reftime1_2,results.reftime2_2,results.reftime3_2,results.reftime4_2,results
]

concs = [results.conc_1,results.conc_2]

masks = [np.ones_like(V).astype(bool) for V in Vs]

plt.figure(figsize=[9,6])
display_pathway_analysis(results.P,ts,Vs,results.model,masks,lams_list,reftimes_list,

Figure S12: Globally fitted (non-parametric) distance distribution

3.3. Effects of insufficient dipolar pathways in the model

This script exemplifies the effects in the fit of the data and in the resulting distance distribution when
modelling a 5-pulse DEER signal with an insufficient number of dipolar pathways.

Figure S13 : Effects of insufficient dipolar pathways in the 5-pulse DEER model on the
WALP dataset analysis

Pfit = results.P
scale = np.trapz(Pfit,r)
Pfit = Pfit/scale
Plot the fitted global distance distribution
plt.plot(r,Pfit,color='b')
Plot the uncertainty of the distance distribution
Pci95 = results.PUncert.ci(95)/scale
Pci50 = results.PUncert.ci(50)/scale
plt.fill_between(r,Pci50[:,0],Pci50[:,1],alpha=0.3,color='b')
plt.fill_between(r,Pci95[:,0],Pci95[:,1],alpha=0.2,color='b')
plt.xlabel('r (nm)')
plt.ylabel('$P(r)$ (nm$^{-1}$)')
plt.tight_layout()
plt.show()

maxpaths = [1,2,3,4,5]
plt.figure(figsize=[15,9])
for n,npathways in enumerate(maxpaths):

Interspin vector distances
r = np.linspace(1,4.5,90)

Vmodels = []
for t,�1,�2,�3 in zip(ts,�1s,�2s,�3s):

Construct information on the pathways-refocusing times based on experiment
experimentInfo = dl.ex_5pdeer(�1,�2,�3)
Construct the dipolar signal model
Vmodel = dl.dipolarmodel(t,r,npathways=npathways,experiment=experimentInfo)

Vmodels.append(Vmodel)

Create a global model
globalmodel = dl.merge(*Vmodels)

Make distance distribution global to all submodels
globalmodel = dl.link(globalmodel,P=['P_1','P_2'])

Include edges in the regularization operator
L = dl.regoperator(np.arange(len(r)),2,includeedges=False)

Fit all experiments datasets to the global model

npathsresult = dl.fit(globalmodel,Vs,regop=L,regparamrange=[1e-0,1e1])

Pfit = npathsresult.P/np.trapz(npathsresult.P,r)

plt.subplot(3,len(maxpaths),n+1)
plt.plot(ts[0],Vs[0],'.',color='gray')
plt.plot(ts[0],npathsresult.model[0],'b')
plt.legend(['data','fit'])
plt.xlabel('t [μs]')
plt.ylabel('V(t)/V0')
plt.title(f'{n+1} dipolar pathway(s)')

plt.subplot(3,len(maxpaths),n+1+len(maxpaths))
plt.plot(ts[1],Vs[1],'.',color='gray')
plt.plot(ts[1],npathsresult.model[1],'b')
plt.legend(['data','fit'])
plt.xlabel('t [μs]')
plt.ylabel('V(t)/V0')

Plot the globally fitted non-parametric distance distribution
plt.subplot(3,len(maxpaths),n+1+2*len(maxpaths))
plt.plot(r,Pfit,'b')
plt.xlabel('r [nm]')
plt.ylabel('P(r) [nm$^{-1}$]')
plt.xlim([min(r),max(r)])

plt.tight_layout()
plt.show()

4. Experiments on TEMPOL

4.1. Equipment

The pulsed EPR experiments were performed at Q-band on a home-built spectrometer based on a
Keysight Arbitrary Waveform Generator (AWG) with a high-power Q-band extension and equipped with
TWT amplifier with 200 W nominal power. A helium flow cryostat (ER 4118 CF, Oxford Instruments) was
used to adjust and stabilize the measurement temperature at 50 K.

A home-built box cavity resonator suitable for 1.6 mm o.d. sample tubes was used operating at about
34.5 GHz with a bandwidth in the range of 150-350 MHz. The resonator profile at the experimental
conditions is:

4.2. Reverse 5-pulse DEER measurements

Using the pulses defined above the 5-pulse DEER experiment was performed according to the sequence:

 - - - - - - - - - -echo

with = 3200 ns, = 3500 ns, and = 1500 ns. The dipolar time was swept from 500 ns to 5700 ns in
16 ns steps.

All probe pulses were realized with rectangular pulses with settings:

Pulse Type Frequency Amplitude Length

rectangular 34.485 GHz 3.38 MHz 32 ns

(π/2)probe [τ1] (π)probe [t] (π)pump [τ1 + τ2 − t] (π)probe [τ3] (π)pump [τ2 − τ3]

τ1 τ2 τ3 t

(π)probe

Pulse Type Frequency Amplitude Length

rectangular 34.485 GHz 3.38 MHz 16 ns

As described in the main text different pump pulse configurations were used for the same probe-pulse
configuration:

Pulse Type Frequency Amplitude Length

#1 rectangular 34.4 GHz 2.8 MHz 8 ns

#2 rectangular 34.4 GHz 4.7 MHz 32 ns

#3 rectangular 34.4 GHz 14.1 MHz 8 ns

#4 rectangular 34.4 GHz 14.1 MHz 32 ns

#5 chirp 34.25-34.55 GHz 15.0 MHz 100 ns

The chirp pulses were generated with a 10 ns rise time.

The following phase cycle was used:

Pulse

x x x x -x -x -x -x x x x x -x -x -x -x x x x x -x -x -x -x x x x x

x x x x x x x x y y y y y y y y -x -x -x -x -x -x -x -x -y -y -y -y

x y -x -y x y -x -y x y -x -y x y -x -y x y -x -y x y -x -y x y -x -y

Det. sign + + + + - - - - + + + + - - - - + + + + - - - - + + + +

4.3. Analysis of the 5-pulse DEER datasets

Prior to any analysis, all measured echoes were down converted from the local oscillator frequency (33
GHz), phase corrected and integrated over the detection window using home-written MATLAB scripts. The
resulting complex-valued dipolar signals and their corresponding dipolar time axes were then exported as
BES3T-formatted files for better portability. The signals were then analyzed using DeerLab 0.14.dev in
Python. After loading the data, the dipolar traces phases were optimized using the
deerlab.correctphase() function.

The intermolecular contributions were modeled using the deerlab.bg_hom3d() parametric function.

Figure S14 : Results of the analysis of the TEMPOL 5-pulse DEER measurements

(π/2)probe

(π)pump

(π)pump

(π)pump

(π)pump

(π)pump

∗

(π/2)probe

(π)pump,1

(π)pump,2

import warnings
warnings.filterwarnings("ignore")

Path to folder containing experimental data
path = './data/TEMPOL_5pDEER_50K_Qband/'

Experimental data files
files = [

'TEMPOL_5pDEERr_rect_32ns_low_amp.txt',
'TEMPOL_5pDEERr_rect_32ns_high_amp.txt',
'TEMPOL_5pDEERr_rect_8ns_low_amp.txt',
'TEMPOL_5pDEERr_rect_8ns_high_amp.txt',
'TEMPOL_5pDEERr_chirp.txt'

]
ovls = [10,17,21,21,35]
5-pulse DEER sequence timings
�1 = 3.2 # μs
�2 = 3.5 # μs
�3 = 1.5 # μs

Spin concentration of the TEMPOL solution
spinconc = 400 # μM

Refocusing times of the dipolar pathways
tref = np.array([

�3, # Pathway #1
�2, # Pathway #2
�2-�3, # Pathway #3
�1+�3, # Pathway #4
�1+�2-�3]) # Pathway #5

Initialize the figure
plt.figure(figsize=[14,8])

Loop over all experiments
for i,filename in enumerate(files):

Load the experimental data
_,Vr,Vi = np.loadtxt(path+filename,unpack=True)

Construct the complex-valued experimental signal
V = Vr + 1j*Vi
Phase correction of the experimental signal
V = dl.correctphase(V)

Construct dipolar time-vector based on the experiment settings
N = len(V) # number of points
dt = 0.016 # μs, step size
t0 = 0.500 # μs, initial delay
t = �1 + �2 - np.linspace(t0,t0+dt*N,N)

Flip the signal (due to error in the spectrometer storage)
mask = np.ones_like(V).astype(bool)
mask[np.arange(255,265,1)] = False

t = t[mask]
V = V[mask]

Rescale the signal w.r.t. its maximum
V /= max(V)

Model of the experimental data

==
Dataset #1
==
Goodness-of-fit:
========= ============= ============ ======= ===========
 Dataset Noise level Reduced �2 RMSD AIC
========= ============= ============ ======= ===========
 #1 0.001 1.440 0.001 -4835.654
========= ============= ============ ======= ===========
Model parameters:
=========== ======= ========================= ======= =========================
 Parameter Value 95%-Confidence interval Units Description
=========== ======= ========================= ======= =========================
 lam1 0.025 (0.024,0.025) None Amplitude of pathway #1

V *= dl.bg_hom3d(t-tref[n]-tshift,spinconc,λs[n])
return V

Vmodel = dl.Model(Vintermolecular)
Vmodel.lam1.set(lb=0,ub=1,par0=0.1, description='Amplitude of pathway #1')
Vmodel.lam2.set(lb=0,ub=1,par0=0.1, description='Amplitude of pathway #2')
Vmodel.lam34.set(lb=0,ub=1,par0=0.1, description='Amplitude of pathway #3')
Vmodel.lam5.set(lb=0,ub=1,par0=0.1, description='Amplitude of pathway #4')
Vmodel.tshift.set(lb=-0.1,ub=0.1,par0=0, description='Time shift', units='μs'

result = dl.fit(Vmodel,V,multistart=5,bootstrap=500)

print(f'==')
print(f'Dataset #{i+1}')
print(f'==')
print(result)
print(f'')
print(f'')

Loop over all dipolar pathways
λs = [result.lam1,result.lam2,result.lam34,result.lam34,result.lam5]

Vinterk = []
for n in range(Npathways):

Intermolecular contribution is a product over all pathway contributions
Vinterk.append(dl.bg_hom3d(t-tref[n]-result.tshift,spinconc,λs[n]))

Plot the data and the fits
plt.subplot(3,5,i+1)
plt.plot(t,V,'.',color='grey')
plt.plot(t,result.model,'b')
plt.xlabel('t [μs]')
plt.ylabel('Vinter(t)/V0')

plt.subplot(3,5,i+6)
for Vinter,color in zip(Vinterk,colors_5pdeer):

plt.plot(t,Vinter,color=color,linewidth=2)
plt.xlabel('t [μs]')
plt.ylabel('Vinter_k(t)/V0')

plt.tight_layout()
plt.savefig('TEMPOL_analysis_results.svg')
plt.show()

 lam2 0.048 (0.048,0.049) None Amplitude of pathway #2
 lam34 0.000 (0.000,0.001) None Amplitude of pathway #3
 lam5 0.000 (0.000,0.001) None Amplitude of pathway #4
 tshift 0.033 (0.024,0.043) μs Time shift
 scale 1.019 (1.019,1.020) None Scaling factor
=========== ======= ========================= ======= =========================

==
Dataset #2
==
Goodness-of-fit:
========= ============= ============ ======= ===========
 Dataset Noise level Reduced �2 RMSD AIC
========= ============= ============ ======= ===========
 #1 0.001 0.884 0.001 -4736.826
========= ============= ============ ======= ===========
Model parameters:
=========== ======= ========================= ======= =========================
 Parameter Value 95%-Confidence interval Units Description
=========== ======= ========================= ======= =========================
 lam1 0.075 (0.073,0.077) None Amplitude of pathway #1
 lam2 0.079 (0.078,0.080) None Amplitude of pathway #2
 lam34 0.002 (0.001,0.004) None Amplitude of pathway #3
 lam5 0.001 (0.000,0.003) None Amplitude of pathway #4
 tshift 0.036 (0.030,0.043) μs Time shift
 scale 1.064 (1.063,1.066) None Scaling factor
=========== ======= ========================= ======= =========================

==
Dataset #3
==
Goodness-of-fit:
========= ============= ============ ======= ===========
 Dataset Noise level Reduced �2 RMSD AIC
========= ============= ============ ======= ===========
 #1 0.000 2.301 0.000 -5206.140
========= ============= ============ ======= ===========
Model parameters:
=========== ======== ========================= ======= =========================
 Parameter Value 95%-Confidence interval Units Description
=========== ======== ========================= ======= =========================
 lam1 0.002 (0.001,0.002) None Amplitude of pathway #1
 lam2 0.008 (0.007,0.008) None Amplitude of pathway #2
 lam34 0.000 (0.000,0.000) None Amplitude of pathway #3
 lam5 0.000 (0.000,0.000) None Amplitude of pathway #4
 tshift -0.021 (-0.056,0.031) μs Time shift
 scale 1.000 (1.000,1.001) None Scaling factor
=========== ======== ========================= ======= =========================

==
Dataset #4
==
Goodness-of-fit:
========= ============= ============ ======= ===========
 Dataset Noise level Reduced �2 RMSD AIC
========= ============= ============ ======= ===========
 #1 0.001 0.931 0.001 -4833.112
========= ============= ============ ======= ===========
Model parameters:
=========== ======== ========================= ======= =========================

 Parameter Value 95%-Confidence interval Units Description
=========== ======== ========================= ======= =========================
 lam1 0.019 (0.018,0.021) None Amplitude of pathway #1
 lam2 0.085 (0.084,0.085) None Amplitude of pathway #2
 lam34 0.001 (0.000,0.002) None Amplitude of pathway #3
 lam5 0.003 (0.001,0.004) None Amplitude of pathway #4
 tshift -0.002 (-0.007,0.002) μs Time shift
 scale 1.019 (1.017,1.020) None Scaling factor
=========== ======== ========================= ======= =========================

==
Dataset #5
==
Goodness-of-fit:
========= ============= ============ ======= ===========
 Dataset Noise level Reduced �2 RMSD AIC
========= ============= ============ ======= ===========
 #1 0.003 1.620 0.004 -3815.139
========= ============= ============ ======= ===========
Model parameters:
=========== ======= ========================= ======= =========================
 Parameter Value 95%-Confidence interval Units Description
=========== ======= ========================= ======= =========================
 lam1 0.292 (0.284,0.298) None Amplitude of pathway #1
 lam2 0.139 (0.136,0.142) None Amplitude of pathway #2
 lam34 0.019 (0.012,0.025) None Amplitude of pathway #3
 lam5 0.018 (0.010,0.025) None Amplitude of pathway #4
 tshift 0.097 (0.091,0.100) μs Time shift
 scale 1.172 (1.162,1.179) None Scaling factor
=========== ======= ========================= ======= =========================

