Supplementary information file for the article: Study of a phosphorescent cationic iridium(III) complex displaying blue shift in crystals

Emiliano Martínez-Vollbert, ${ }^{\text {a }}$ Christian Philouze, ${ }^{\text {a }}$ Isabelle Gautier-Luneau, ${ }^{\text {b }}$ Yohann Moreau, ${ }^{\text {c }}$ Pierre-Henri Lanoë, ${ }^{\text {a* }}$ and Frédérique Loiseau ${ }^{\text {* }}$
a Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
b Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
c Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
* Correspondence pierre-henri.lanoe@univ-grenoble-alpes.fr ; Frederique.loiseau@univ-grenoble-alpes.fr

Table of contents

General considerations 2
Crystal Structure Determinations and Refinements 2
Synthesis 4
TD-DFT calculation of the absorption spectrum of complex A, singlet ground state, optimized in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. 10
DFT calculation on orbitals localization for the radiative transition $T_{1} \rightarrow S_{0}$ 14
Figure S 1: Views (from top to bottom: projection in $b c$, $a c$, and ab planes) of the crystal packing with the counter ions in space filling. Hydrogens atoms have been omitted for clarity 6
Figure S 2: Packing of the molecules in ball and sticks, along the a axis. Hydrogens atoms have been omitted for clarity. 7
Figure S 3: Projection of the chains in ab plane 7
Figure S 4: View of the chains along the direction ac. 8
Figure S 5: Intracatenar Hydrogen bond between the H 22 atoms and the C11-C12 carbon bond. 8
Figure S 6: Intramolecular interaction between the hydrogen atom H 9 and the nitrogen atom N3. 9
Figure S 7: Powder X-ray diffraction diagram of crystals (black) registrated at room temperature compared to calculated pattern from crystal structure (200 K) (red).9
Figure S 8: Luminescence decays. 10
Figure S 9: Reconstructed UV-Vis absorption spectrum for complex A only, in chloromethane (right scale: Molar absorbance computed as detailed in https://gaussian.com/uvvisplot/), together with computed peaks (left scale, arbitrary units for oscillator strength). Results from TD-DFT calculations, MN15/Def2SVP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ implicit solvent. 12
Figure S 10: Natural transition Orbitals (Hole/Electron) for the four lowest energetic transitions. TD- DFT MN15/Def2-SVP, implicit solvent model for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 13
Figure S 11: Frontier orbitals of Complex A in vaccuum: SOMO's of the triplet state (left) and HOMO/LUMO of the singlet state (right). 15
Figure S 12: Frontier orbitals of Complex \mathbf{A} in $\mathrm{CH}_{5} \mathrm{Cl}_{2}$: SOMO's of the triplet state (left) and HOMO/LUMO of the singlet state (right). 16
Figure S 13: Frontier orbitals of Complex A in the crystal: SOMO's of the triplet state (left) and HOMO/LUMO of the singlet state(right) 17
Figure S 14: ${ }^{1} \mathrm{H}$ NMR spectra of the cyclometallating ligand 400 MHz in CDCl_{3} 18
Figure $\mathrm{S} 15:{ }^{13} \mathrm{C}$ NMR spectra of the cyclometallating ligand 101 MHz in CDCl_{3} 18
Figure S 16: ${ }^{1} \mathrm{H}$ NMR spectra of complex $\mathbf{A} 500 \mathrm{MHz}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. 19
Figure S 17: ${ }^{13} \mathrm{C}$ NMR spectra of complex $\mathbf{A}, 126 \mathrm{MHz}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ 19
Figure $\mathrm{S} 18:{ }^{19} \mathrm{~F}$ NMR spectra of complex $\mathbf{A} 470 \mathrm{MHz}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ 20

General considerations

Commercially available reagents were purchased from Sigma-Aldrich ${ }^{\circledR}$, Alfa Aesar ${ }^{\circledR}$, Acros Organics ${ }^{\circledR}$, TCI Chemical ${ }^{\circledR}$, Merck ${ }^{\circledR}$, Strem ${ }^{\circledR}$ or Fluorochem ${ }^{\circledR}$ and used as received unless otherwise specified. Solvents were obtained from same commercial sources and used without further purification. For moisture sensitive reactions, glassware was oven-dried prior to use. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 400 MHz and on a 500 MHz in deuterated solvent ($\mathrm{CDCl}_{3}, \mathrm{DMSO}-\mathrm{d}^{6}$ or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) and data are reported as follows: chemical shift in ppm from tetramethylsilane with solvent as an internal indicator $\left(\mathrm{CDCl}_{3} 7.26 \mathrm{ppm}\right.$, dmso-d6 $2.50 \mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2} 5.32 \mathrm{ppm}$), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $q=$ quartet, $p=$ pentet, $m=$ multiplet or overlap of non-equivalent resonances), integration. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded either at 101 MHz or at 126 MHz in suitable deuterated solvent and data are reported as follows: chemical shift in ppm from tetramethylsilane with the solvent as an internal indicator $\left(\mathrm{CDCl}_{3} 77.16 \mathrm{ppm}\right.$, DMSO-d $\left.{ }^{6} 39.52 \mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2} 53.84 \mathrm{ppm}\right) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded at 376 MHz and at 470 MHz in the suitable deuterated solvent.

Crystal Structure Determinations and Refinements.

An orange plate crystal ($0.13 \times 0.15 \times 0,30 \mathrm{~mm}$) was picked up, coated with a paraffin mixture and mounted with a nylon loop and centered on a Bruker-Nonius diffractometer equipped with an Incoatec high brilliance microsource with multilayers mirrors monochromatized $\mathrm{Mo}(\mathrm{K} \alpha)$ radiation ($\lambda=0.71073$ $\AA ̊)$ and an APEX II detector. Data collection was made at 200 K with an Oxford Cryosystem cryostream cooler. Final cell parameters were obtained post-refining the whole data. The collected reflections were corrected for Lorentz and polarization effects (EVAL14) and for absorption (SADABS). The resulting data was merged using XPREP. Crystals and data collection details are given in Table S1. Using the OLEX 2^{1} analysis package, the crystal structural solution was solved by charge flipping method (Superflip) and refinement was done by full-matrix least squares on F^{2} (SHELX2013). C, N, O, F, P, Cl, and Ir atoms were refined anisotropically. H atoms were set geometrically, riding on the carrier atoms, with isotropic thermal parameters. PF_{6} anion and dichloroethane molecules displayed disorders which were treated using different positions with partial occupancy rates and restraints.

Table S 1: Crystal data and structure refinement for $\left[\operatorname{Ir}(\mathrm{phbzOMe})_{2}(\mathrm{dmp}) \mathrm{PF}_{6}\right]$.

	$\left.\left.[\text { lr(phbzOMe })_{2}\right)_{2}(\mathrm{dmp}) \mathrm{PF}_{6}\right]$
Empirical formula	$\mathrm{C}_{48} \mathrm{H}_{50}$ Ir $\mathrm{N}_{6} \mathrm{O}_{4}, \mathrm{PF}_{6}, 3\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}\right)$
Formula weight/g.mol ${ }^{-1}$	1408.96
Morphology	plate
Colour	orange
Crystal size $/ \mathrm{mm}$	$0.13 \times 0.15 \times 0.30$
Crystal system	monoclinic
Space group	$\mathrm{C} 2 / \mathrm{c}$
Temperature/K	200

a/Å	19.554(4)
b/Å	22.055(4)
c/Å	15.394(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	117.07(3)
Y/ ${ }^{\circ}$	90
Volume/A ${ }^{3}$	5911(2)
Z	4
$\mathrm{p}_{\text {calc }} / \mathrm{g} . \mathrm{cm}^{-3}$	1.583
μ / mm^{-1}	2.625
F(000)	2832
Radiation/Å	$\operatorname{MoK} \alpha(\lambda=0.71073)$
Θ range for data collection/ ${ }^{\circ}$	2.809 to 30.000
Index ranges	$-27 \leq h \leq 27,-30 \leq k \leq 31,-21 \leq 1 \leq 21$
Total reflections	41641
Unique reflections	8603
Observed reflections	$3224\left(\mathrm{~F}^{2}>2\right.$? $)$
Rint	0.0351
Data/restraints/parameters	8603/175/424
Goodness-of-fit on F^{2}	1.167
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$R 1=0.0265, w R 2^{\text {a }}=0.0644$
Final R indexes [all data]	$\mathrm{R} 1=0.0362, \mathrm{wR}^{\mathrm{a}}=0.0742$
Largest diff. peak/hole /e. \AA^{-3}	2.163/-1.139

${ }^{\text {a }}$ Refinement based on F^{2} whith $\mathrm{w}=1 /\left[\sigma^{2}(\mathrm{Fo})^{2}+(0.0278 \mathrm{p})^{2}+12.8951 \mathrm{p}\right]$ where $\mathrm{p}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3$

Synthesis

Ligand synthesis
5-methoxy- N-(1-methylethyl)-2-nitrobenzenamine (50 mg, 2.4 mmol) and 4methoxybenzaldehyde ($325 \mathrm{mg}, 2.4 \mathrm{mmol}$) were dissolved in a mixture of 2-ethoxyethanolwater $3: 1$ and heated until dissolution. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(1.25 \mathrm{~g}, 7.2 \mathrm{mmol})$ was added to the mixture and refluxed overnight. The reaction mixture was cooled to r. t. and the product extracted with dichloromethane and purified over SiO_{2} dichloromethane/pentane (9:1). The title compound was isolated as a white powder ($324 \mathrm{mg}, 57 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{hept}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, \mathrm{~J}$ $=9.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.62(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.7,155.9,153.20,138.6$, 134.2, 130.9, 123.5, 120.5, 114.2, 110.4, 96.9, 56.2, 55.5, 48.7, 21.3. LR-MS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 297.38$ found 297.07. Elementary analysis calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{C}, 72.95$; H, 6.80; N, 9.45; found C, 72.70; H, 6.69; N, 9.36.

Complex A

Following the method first published by Nonoyama, ${ }^{2}$ from the ligand, the chloro-bridged Ir(III) dimer was synthesized and used without further purification using $\operatorname{lrCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}(60 \mathrm{mg}, 0.2$ mmol) and 6-methoxy-2-(4-methoxyphenyl)-1-(1-methylethyl)-1H-benzimidazole ($125 \mathrm{mg}, 0.4 \mathrm{mmol}$) obtaining a yellowish powder ($90 \mathrm{mg}, 55 \%$). The chloro-bridged dimer ($90 \mathrm{~g}, 0.1 \mathrm{mmol}$) and $4,4^{\prime}$-dimethyl-2,2'-dipyridyl ($20 \mathrm{mg}, 0.1 \mathrm{mmol}$) were dissolved in a mixture $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH} 1: 1$ and refluxed overnight. The mixture was cooled to r. t. and reduced to $1 / 4$ of the volume, a saturated solution of $\mathrm{KPF}_{6 \text { (ac) }}$ was added until precipitation. The precipitated was filtrated and purified over $\mathrm{SiO}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone (9:1). Complex \mathbf{A} was isolated as an orange powder (81 mg, $67 \%)$. The complex was crystalized by slow vapor diffusion using as solvent 1,2-dichloroethane
and non-solvent diisopropylether obtaining dark orange crystals displaying a green-yellow emission under UV light.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ (dd, $J=5.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=8.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=9.0$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.78$ (d, J=2.6 (s, 1H), 3.43 (s, 1H), 2.59 (s 163.0, 161.1, 156.9, 156.5, 115.2, 112.4, 108.3, 98.5, 133.9, -137.4, -140.9, -144. HRMS (ESI) calcd m / z 965.: Analysis calcd for $\mathrm{C}_{48} \mathrm{H}_{50} \mathrm{~F}_{6} \mathrm{l}$ 7.75.

Figure S 1: Views (from top to bottom projection in bceae, and ab planes) of the crystal packing with the counter ions in space filling. Hydrogens atoms havet been on teed for glarity.

Figure S 2: Packing of the molecules in ball and sticks, along the a axis. Hydrogens atoms have been omitted for clarity.

Figure S 3: Projection of the chains in ab plane

Figure S 4: View of the chains along the direction ac.

Figure S 5: Intracatenar Hydrogen bond between the H 22 atoms and the C11-C12 carbon bond.

Figure S 6: Intramolecular interaction between the hydrogen atom H9 and the nitrogen atom N3.

Figure S 7: Powder X-ray diffraction diagram of crystals (black) registrated at room temperature compared to calculated pattern from crystal structure (200 K) (red).

The experimental pattern of crystals (collected indiscriminately from the same batch of crystallization) is similar to calculated one from the crystal structure. The shift of the peaks is due to the measurement realized at different temperatures. Furthermore, PXRD pattern of no grinded crystals shows different intensities due to preferential orientations (002 peak at 2 theta angles $=12.5^{\circ}$ for example) and also some additional peaks (with a broadening of the peak at full width at half maximum) probably due to degraded crystals with loss of crystallization solvent. Effectively some unbright crystals are observed under optical microscope. The contribution of this degraded phase is minor.

Figure S 8: Luminescence decays.
TD-DFT calculation of the absorption spectrum of complex A , singlet ground state, optimized in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Table S 2: 20 first absorptions of Complex A in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, singlet state, with $\mathrm{DE}(\mathrm{eV})$, corresponding I (nm), oscillator strength (noted f) and composition. Orbital nb 214 being the HOMO, and 215 the LUMO.

Transition $\mathbf{n b}$	$\mathbf{\Delta E}(\mathbf{e V})$	$\boldsymbol{\lambda}(\mathbf{n m})$	Oscillator strength \boldsymbol{f}	Composition (occupied OM nb to virtual OM nb, wih weight)	
$\mathbf{1}$	3.1018	399.71	0.0004	$210->215$	0.18286
				$212->215$	0.14841
$\mathbf{2}$	3.2244	384.52	0.0422	$214->215$	0.65573
$\mathbf{3}$	3.5521			$211->215$	0.19100
		349.04	0.0002	$213->215$	0.67058
$\mathbf{4}$	3.6897			$208->215$	-0.17532
		336.02	0.5437	$212->215$	-0.30279
			$213->218$	0.59149	

				214 -> 217	-0.16502
5	3.7300	332.39	0.0781	213 -> 216	0.44088
				213 -> 217	-0.12600
				$214->218$	0.48071
				$214->219$	0.10587
6	3.8776	319.74	0.0006	$206->215$	0.10642
				$208->215$	0.15224
				$210->215$	0.53154
				$212->215$	0.31184
				214 -> 215	-0.25173
7	3.9234	316.02	0.1229	$205->215$	0.12515
				209 -> 215	0.15792
				211 -> 215	0.61351
				213 -> 215	-0.21140
				$213->216$	0.10793
8	4.0795	303.92	0.0615	$211->218$	0.19134
				$212->216$	-0.16182
				$213->218$	0.49810
				$213->221$	-0.12999
				$214->216$	-0.26707
9	4.0857	303.46	0.0269	$210->218$	-0.14197
				$211->216$	0.13447
				$212->218$	-0.14769
				$213->216$	0.47917
				$214->218$	-0.39936
10	4.1737	297.06	0.0007	210 -> 215	-0.10307
				$210->217$	0.14009
				$212->217$	0.12400
				$214->216$	0.19186
				$214->217$	0.62518
11	4.2660	290.64	0.0181	$211->217$	0.14238
				$213->217$	0.65453
				$214->219$	0.11218
12	4.3730	283.52	0.0590	$208->216$	-0.16703
				$210->216$	-0.20159
				$212->216$	0.57106
				$212->217$	-0.13516
13	4.4018	281.67	0.0004	$208->218$	0.12217
				$210->218$	0.22326
				$210->219$	0.15789
				$210->221$	-0.11723
				$210->227$	-0.13982
				$212->218$	-0.25945
				$213->217$	-0.11410
				$214->218$	-0.10743
				214 -> 219	0.36715
				$214->221$	-0.14359
14	4.4219	280.39	0.1211	$204->215$	0.28493
				$206->215$	0.14741
				$210->216$	0.15072
				$211->218$	0.15724
				$211->219$	0.17997
				$211->221$	-0.12327
				$211->227$	-0.11596
				$212->216$	0.11729
				$213->218$	-0.21822
				213 -> 219	0.30746
				$213->221$	-0.15054
15	4.4409	279.19	0.0004	$203->215$	-0.11402
				209 -> 215	0.28162
				$210->218$	-0.20198
				211 -> 216	-0.13764
				$212->218$	0.20295
				$212->219$	0.17956
				$214->219$	0.41607
16	4.4870	276.32	0.4318	204 -> 215	0.24010
				206 -> 215	0.15389
				$209->218$	-0.10272
				$210->216$	-0.26090
				$210->217$	0.13661

				$\begin{aligned} & 211->218 \\ & 212->217 \\ & 213->219 \\ & 213->221 \end{aligned}$	$\begin{array}{r} -0.27061 \\ -0.12228 \\ 0.29179 \\ 0.10935 \end{array}$
17	4.4917	276.03	0.0327	$\begin{aligned} & 203->215 \\ & 205->215 \\ & 207->215 \\ & 209->215 \\ & 211->215 \\ & 211->216 \\ & 212->218 \\ & 214->218 \\ & 214->219 \end{aligned}$	$\begin{array}{r} -0.19355 \\ 0.12910 \\ 0.13989 \\ 0.44120 \\ -0.15546 \\ -0.10387 \\ -0.25468 \\ 0.10196 \\ -0.24566 \end{array}$
18	4.5196	274.33	0.0414	$\begin{aligned} & 209->215 \\ & 209->216 \\ & 210->218 \\ & 211->216 \\ & 212->218 \\ & 213->220 \\ & 214->219 \end{aligned}$	$\begin{array}{r} 0.21988 \\ 0.17059 \\ 0.19087 \\ 0.33482 \\ 0.34394 \\ -0.13771 \\ -0.17660 \\ \hline \end{array}$
19	4.5620	271.77	0.1574	$\begin{aligned} & 204->215 \\ & 206->215 \\ & 210->216 \\ & 210->217 \\ & 212->217 \\ & 213->218 \\ & 213->219 \end{aligned}$	$\begin{array}{r} -0.34722 \\ -0.19862 \\ -0.20835 \\ -0.13517 \\ 0.13630 \\ -0.15964 \\ 0.41402 \end{array}$
20	4.6231	268.18	0.0279	$\begin{aligned} & 204->215 \\ & 206->215 \\ & 208->215 \\ & 210->215 \end{aligned}$	$\begin{array}{r} -0.10605 \\ 0.11772 \\ 0.60437 \\ -0.24779 \end{array}$

Reconstructed UV-Vis spectrum and computed peaks
TD-DFT MN15/Def-2SVP, implicit $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Figure S 9: Reconstructed UV-Vis absorption spectrum for complex A only, in chloromethane (right scale: Molar absorbance computed as detailed in https://gaussian.com/uvvisplot/), together with computed peaks (left scale, arbitrary units for oscillator strength). Results from TD-DFT calculations, MN15/Def2SVP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ implicit solvent.

Transition nb 3: $\lambda(\mathrm{nm})=349.04 \mathrm{~nm}, \mathrm{f}=0.0002$. type: MLCT

Transition nb 4: $\lambda(\mathrm{nm})=336.02 \mathrm{~nm}, \mathrm{f}=0.5437$. type: MLCT

Figure S 10: Natural transition Orbitals (Hole/Electron) for the four lowest energetic transitions. TD-DFT MN15/Def2-SVP, implicit solvent model for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

DFT calculation on orbitals localization for the radiative transition $\mathrm{T}_{1} \rightarrow \mathrm{~S}_{\mathbf{0}}$

Kohn-Sham orbitals represented hereafter represent the singly occupied molecular orbitals (SOMO 1 and 2) in the triplet state vs the HOMO and LUMO in the singlet state for the three cases: in vacuum, with an implicit solvent model for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and embedded in the model of crystal. For each situation, the optimized geometry of the triplet in the specific condition is used for both triplet and singlet configurations, consistently with the view of a vertical $T \rightarrow$ s transition.

In the three cases, the emission can be seen as a deexcitation of the electron described by the SOMO 2 orbital of the triplet, located on the dimethylbipyridine (dmp) towards the HOMO of the singlet, delocalized between the metal and the 2-phenylbenzimidazole ligands (pbi)

It is noteworthy that while the SOMO-1 and the HOMO are evenly distributed on the two 2phenylbenzimidazole ligands in vacuum, it tends to become dissymmetric in solvent and in crystal, with a complete relocalization in some cases. That behavior is consistent with a polarization due to the environment in the two latter cases.

Figure S 11: Frontier orbitals of Complex A in vaccuum: SOMO's of the triplet state (left) and HOMO/LUMO of the singlet state (right)

Figure S 12: Frontier orbitals of Complex \mathbf{A} in $\mathrm{CH}_{5} \mathrm{Cl}_{2}$: SOMO's of the triplet state (left) and HOMO/LUMO of the singlet state (right).

-0.138 Ha
SOMO 2

SOMO 2

Figure S 13: Frontier orbitals of Complex A in the crystal: SOMO's of the triplet state (left) and HOMO/LUMO of the singlet state(right).

Figure $\mathrm{S} 14:{ }^{1} \mathrm{H}$ NMR spectra of the cyclometallating ligand 400 MHz in CDCl_{3}

Figure $\mathrm{S} 15:{ }^{13} \mathrm{C}$ NMR spectra of the cyclometallating ligand 101 MHz in CDCl_{3}.

Figure S 16: ${ }^{1} \mathrm{H}$ NMR spectra of complex $\mathbf{A} 500 \mathrm{MHz}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S 17: ${ }^{13} \mathrm{C}$ NMR spectra of complex $\mathbf{A}, 126 \mathrm{MHz}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S $18:{ }^{19} \mathrm{~F}$ NMR spectra of complex $\mathbf{A} 470 \mathrm{MHz}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S 19: ${ }^{31} \mathrm{P}$ NMR spectra of complex $\mathbf{A} 202 \mathrm{MHz}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

References

1 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.

2 M. Nonoyama, Bull. Chem. Soc. Jpn., 1974, 47, 767.

