Supporting Information

Effect of the Substituents of New Coumarin-imidazo[1,2-*a*]heterocyclic-3acrylate Derivatives on Nonlinear Optical Properties: A combined experimental-theoretical approach

Juan Luis Vázquez,^a Iván Velazco-Cabral,^a Edgar Alvarado-Méndez,^b Monica Trejo-Durán,^b Marcos Flores-Alamo,^c Eduardo Peña-Cabrera,^a Marco A. Garcia-Revilla,^a Miguel A. Vázquez.^{a,*}

^aChemistry Department, DCNE, University of Guanajuato, Noria Alta s/n, 36050, Guanajuato, Gto., Mexico. ^bEngineeringDivision Campus Irapuato-Salamanca, University of Guanajuato, Palo Blanco s/n, 36885, Salamanca, Gto., Mexico.

eFaculty of Chemistry, National Autonomous University of Mexico, Av. Insurgentes Sur S/N, 04510, D.F., México.

* Corresponding author. E-mail address: mvazquez@ugto.mx (M.A. Vázquez).

1.	General Metho									
2.		- g .2								
3.	General procedure for coumarin-imidazo[1,2-a]pyridine-3-carbaldehyde derivatives 5a-e .									
4.	General procedure for 3-bromo-2-(cumarin-3-il)imidazo[1,2-a]pyridine derivatives 6a-	-h								
	20									
5.	General procedure of coumarin-imidazo[1,2-a]pyridine-3-acrylates derivatives 7a-	-h								
	46									
6.	Nonlinear properties									
7.	Computational Details									
8.	Equilibrium Geometry in Ground State, Equilibrium Geometry in Excited states, Excitation energies									
	and oscillator strength of compound 7	7a								
	and oscillator strength of compound 7 (B3LYP)	7a								
9.	andoscillatorstrengthofcompound7(B3LYP)	7a es								
9.	andoscillatorstrengthofcompound7(B3LYP)	7a es P)								
9.	and oscillator strength of compound 7 (B3LYP)	7a es P)								
9. 10.	and oscillator strength of compound 7 (B3LYP)	7a es P)								
9. 10.	and oscillator strength of compound 7 (B3LYP)	7a es P)								
9. 10. 11.	and oscillator strength of compound 7 (B3LYP)	7 a es P) 1								
9. 10. 11.	and oscillator strength of compound 7 (B3LYP)	7 a es P) 4 nd								
 9. 10. 11. 12. 	and oscillator strength of compound 7 (B3LYP)	7a es P) 4 nd 5 in								
 9. 10. 11. 12. 	and oscillator strength of compound 7 (B3LYP)	7a es P) 4 nd 5 in 7								
 9. 10. 11. 12. 13. 	and oscillator strength of compound 7 (B3LYP)	7a es P) 4 nd 5 in 7 zo								

14.	Equilibrium Geometry in Ground State and Dihedral angles of compound 4a									
15.	Mulliken	and	Hirshfeld	charges	for	the	coumarin	and	imidazo[1,2-a]pyridine	moieties.
										104

1. General Method

All melting points were determined on Electrothermal 9100 Melting point apparatus and were not corrected. Microwave irradiation was carried out in a Discover SP CEM microwave. Reactions were monitored by thin layer chromatography (TLC) using Sigma Aldrich TLC plates 20 x 20 locating the spots using UV light as the visualizing agent. Column chromatography was performed on silica gel 230-400 mesh. Standard work up: organic layers were dried with Na₂SO₄ and concentrated in vacuum. Infrared spectra were recorded on Spectrum 100 Perkin Elmer instrument and values are reported in cm⁻¹ units. UV spectra were recorded on Perkin Elmer lambda 50, and the emission spectra were recorded on Fluorescence spectrophotometer HITACHI F-7000. ¹H and ¹³C NMR spectra were recorded on Nuclear Magnetic resonance spectrometer Bruker Avance III HD with the magnet Bruker Ascent 400 MHz or Bruker Avance III HD with the magnet Bruker Ultra Shield 500 MHz HD at 25 °. Chemical shifts are given in δ values relative to TMS (tetramethylsilane) as internal standard. Mass spectra were recorded on Spectrometer Maxis Impact ESI-QTOF-MS, Bruker Daltonics mass spectrometer.

2. Synthetic procedures and spectroscopic data of compounds 1a-c, 2a-c and 4a-g

Compounds 1 a-c, 2 a-c and 4a-g were synthesized using literature procedure previously.[1,2]

Et₂N \rightarrow **3**-acetyl-7-(diethylamino)-2H-chromen-2-one (1a): Yield 82%, m.p. 150 – 151 °C; RMN ¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 8.40 (s, 1H, -CH=C–), 7.38 (d, J (H,H) = 8.9 Hz, 1H, Ar), 6.62 (dd, J (H,H) = 8.9, 1.8 Hz, 1H, Ar), 6.44 (d, J (H,H) = 1.4 Hz, 1H, Ar), 3.46 (q, J (H,H) = 7.0 Hz, 4H, -<u>CH₂CH₃</u>), 2.67 (s, 3H, CH₃), 1.25 (t, J (H,H) = 7.1 Hz, 6H, -CH₂<u>CH₃</u>); ¹³C NMR (125 MHz, CDCl₃, 25 °C, TMS) δ = 195.50, 160.78, 158.68, 153.00, 147.75, 131.87, 115.93, 109.87, 108.07, 96.46, 45.11, 30.51, 12.48; FT-IR (KBr) ν_{max} = 1725 cm⁻¹ (C=O), 1664 cm⁻¹ (C=O lactone); UV–Vis (MeOH) λ_{max} = 243 nm, 312 nm.

3-acetyl-2H-chromen-2-one (1b): Yield 90%, m.p. 107 – 109 °C, ¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) $\delta = 8.52$ (s, 1H, –CH=C–), 7.66 (d, *J* (H,H) = 2.8 Hz, 2H, Ar), 7.41 – 7.33 (m, 2H, Ar), 2.74 (s, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃, 25 °C, TMS) $\delta = 195.5$, 159.2,155.3, 147.4, 134.3, 130.2,125.0, 124.9, 118.3, 116.7, 30.5; FT-IR (KBr) $v_{max} = 1741$ cm⁻¹ (C=O), 1678 cm⁻¹ (C=O lactone); UV–Vis (MeOH) $\lambda_{max} = 245$ nm.

bet 3-acetyl-8-ethoxy-2H-chromen-2-one (1c): Rendimiento: 95%, solido de amarillo claro, p.f. = 133 – 136 °C, RMN ¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 8.461(s, 1H, – CH=C–), 7.170-7.242 (m, 3H, Ar), 4.206 (q, J (H,H) = 7 Hz, 2H, H-8a), 2.726 (s, 3H, H-3b), 1.518 (t, J (H,H) = 7 Hz, 3H, H-8b); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ = 195.74, 158.97, 147.80, 146.48, 145.28, 124.89, 124.66, 121.36, 119.02, 117.21, 65.21, 30.66, 14.78; FT-IR (KBr) v_{max} = 1730 cm⁻¹ (C=O), 1716 cm⁻¹ (C=O lactone); UV–Vis (MeOH) λ_{max} = 315.

Et₂N 3-(2-bromoacetyl)-7-(diethylamino)-2H-chromen-2-one (2a): Yield 73%, m.p. 211 – 213 °C; ¹H NMR (500 MHz, DMSO- d_6 , 25 °C, TMS) δ = 8.53 (s, 1H, –CH=C–), 7.48 – 7.37 (m, 1H, Ar), 6.69 – 6.60 (m, 1H, Ar), 6.48 (d, J (H,H) = 2.4 Hz, 1H, Ar), 4.77 (s, 2H, –<u>CH₂Br</u>), 3.48 (q, J (H,H) = 7.1 Hz, 4H, –<u>CH₂CH₃</u>), 1.26 (t, J (H,H) = 7.1 Hz, 6H, –CH₂<u>CH₃</u>); ¹³C NMR (125 MHz, DMSO- d_6 , 25 °C, TMS) δ = 188.57, 160.55, 159.00, 153.59, 149.44, 132.22, 113.98, 112.71, 110.22, 108.44, 96.69, 45.28, 36.77, 12.45; FT-IR (KBr) v_{max} = 1735 cm⁻¹ (C=O), 1675 cm⁻¹ (C=O lactone); UV–Vis (CH₂Cl₂) λ_{max} = 245 nm, 270 nm.

3-(2-bromoacetyl)-2H-chromen-2-one (2b): Yield 95%, m.p. 163 – 164 °C; ¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) $\delta = 8.64$ (1H, s, -CH=C-), 7.71 (t, *J* (H,H) = 7.2 Hz, 2H, Ar), 7.44 – 7.35 (m, 2H, Ar), 4.76 (s, 2H, $-\underline{CH_2}Br$); ¹³C NMR (125 MHz, CDCl₃, 25 °C, TMS) $\delta = 188.90$, 158.88, 155.43, 149.54, 135.12, 130.43, 125.31, 122.19, 118.15, 116.91, 35.59; FT-IR (KBr) $v_{max} = 1727$ cm⁻¹ (C=O), 1685 cm⁻¹ (C=O lactone); UV–Vis (CH₂Cl₂) $\lambda_{max} = 247$ nm.

Br OEt 3-(2-bi

OEt 3-(2-bromoacetyl)-8-ethoxy-2H-chromen-2-one (2c): gray powder; yield 79%; m.p. 180 – 182 °C; ¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) $\delta = 8.60$ (s, 1H, –CH=C–), 7.19–7.32 (m, 3H, Ar), 4.77 (s, 2H, CH2), 4.23 (q, J (H,H) = 7.2 Hz, 2H, –<u>CH2</u>CH₃), 1.54 (t, J (H,H) = 7.2 Hz, 3H, –CH2<u>CH3</u>); ¹³C NMR (125 MHz, CDCl₃, 25 °C, TMS) $\delta = 173.03$, 162.70, 154.19, 151.42, 145.53, 127.92, 125.75, 120.01, 118.43, 115.47, 62.13, 35.10, 13.73; FT-IR (KBr) $\nu_{max} = 1,722$ cm⁻¹ (C=O), 1,692 cm⁻¹ (C=O lactone).

Et₂N 7-(*diethylamino*)-3-(*imidazo*[1,2-a]pyridin-2-yl)-2H-chromen-2-one (4a): Yield 92%; dark yellow powder; m.p. 167.6 – 169 °C; ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.65 (s,1H, $-\underline{CH}=C-$), 8.44 (s, 1H, $-\underline{CH}=C-$), 8.11 (d, J (H,H) = 7,1 Hz,1H, Ar), 7.56 (d, J (H,H) = 8.5 Hz, 1H, Ar), 7.41 (d, J (H,H) = 8.5, 1,5 Hz, 1H, Ar), 7.16 (t, J (H,H) = 7.5 Hz, 1H, Ar), 6.74 (t, J (H,H) = 7.5 Hz, 1H, Ar), 6.62 (d, J (H,H) = 9 Hz, 1H, Ar), 6.54 (s, 1H, Ar), 3.44 (q, J (H,H) = 7 Hz, 4H, $-\underline{CH}_2-CH_3$), 1.22 (t, J (H,H) = 7 Hz, 6H, $-CH_2-\underline{CH}_3$) RMN¹³C (125 MHz, CDCl₃, TMS) δ (ppm): 161.1, 175.8, 176.5, 164.8, 159.5, 158.8, 149.3, 145.8, 144.9, 136.6, 133.6, 132.2, 131.9, 109.3, 109.2, 97.1, 44.9, 12.6; FT-IR (KBr) $v_{max} = 1705$ cm⁻¹ (C=O lactone), 1619 cm⁻¹ (C=C Ar); UV–Vis (MeOH) $\lambda_{max} = 421$ nm; HRMS (ESI m/z) Calcd. for $C_{20}H_{19}N_3O_2$ [M+H]⁺ 334.1550, found 334.1564.

Et₂N 7-(*diethylamino*)-3-(7-*methylimidazo*[1,2-a]pyridin-2-yl)-2H-chromen-2one (4b): Yield 87%; dark yellow powder; m.p. 200.6 – 202°C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.62 (s, 1H, $-\underline{CH}=C-$), 8.36 (s, 1H, $-\underline{CH}=C-$), 7.98 (d, J (H,H) = 7 Hz, 1H, Ar), 7.41 (d, J (H,H) = 8.5 Hz, 1H, Ar), 7.31 (s, 1H, Ar), 6.62 (dd, J (H,H) = 8.5, 2 Hz, 1H, Ar), 6.59 (dd, J (H,H) = 7, 1.5 Hz, 1H, Ar), 6.54 (s, J (H,H) = 2 Hz, 1H, Ar), 3.44 (q, J (H,H) = 7 Hz, 4H, $-\underline{CH}_2$ -CH₃), 2.39 (s, 3H), 1.23 (t, J (H,H) = 7 Hz, 6H, $-CH_2-\underline{CH}_3$); RMN ¹³C (125 MHz, CDCl₃, TMS) δ (ppm): 161.3, 155.88, 150.8, 145.7, 139,5, 139.1, 136.4, 129.7, 126.4, 115.4, 115.1, 114.2, 112.1, 109.5, 97.4, 45.2, 21.7,12.8; FT-IR (KBr) ν_{max} = 1712 cm⁻¹ (C=O lactone), 1621 cm⁻¹ (C=C Ar); UV–Vis (MeOH) λ_{max} = 422 nm; HRMS (ESI m/z) Calcd. for C₂₁H₂₁N₃O₂ [M+H]⁺ 348.1707, found 348.1725.

Et₂N 7-(*diethylamino*)-3-(*imidazo*[2,1-b]thiazol-6-yl)-2H-chromen-2-one (4c): Yield 78%; dark brown powder; m.p. 173 – 175°C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.45 (s, 1H, $-\underline{CH}=C-$), 8.30 (s, 1H, $-\underline{CH}=C-$), 7.41 (d J (H,H) = 4.5 Hz, 1H, Ar), 7.37 (d, J (H,H) = 9 Hz, 1, Ar), 6.78 (d, J (H,H) = 4.5 Hz, 1H, Ar), 6.61 (dd, J (H,H) = 9, 2.5 Hz, 1H, Ar), 6.52 (s, J (H,H) = 2.5 Hz, 1H, Ar), 3.43 (q, J (H,H) = 7 Hz, 4H, $-\underline{CH}_2-CH_3$), 1.22 (t, J (H,H) = 7 Hz, 6H, $-CH_2-\underline{CH}_3$); RMN¹³C (125 MHz, CDCl₃, TMS) δ (ppm): 161.0, 155.6, 150.5, 15.15, 141.9, 137.89, 129.4, 119.0, 114.4, 112.5, 112.3, 109.5, 109.4, 97.3, 45.1, 12.8; FT-IR (KBr) v_{max} = 1710 cm⁻¹ (C=O lactone), 1618 cm⁻¹ (C=C Ar); UV–Vis (MeOH) λ_{max} = 415 nm; HRMS (ESI m/z) Calcd. for C₁₈H₁₇N₃O₂ [M+H]⁺ 340.1114, found 340.1118.

7-(diethylamino)-3-(7-methylimidazo[1,2-a]pyrimidin-2-yl)-2H-chromen-2-

one (4d): Yield 98%; yellow powder; m.p. 229.4 – 231 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.72 (s, 1H, $-\underline{CH}=C-$), 8.26 (s, 1H, $-\underline{CH}=C-$), 8.24 (d, *J* (H,H) = 7 Hz, 1H, Ar), 7.38 (d, *J* (H,H) = 8.5 Hz, 1H, Ar), 6.65 (d, *J* (H,H) = 7 Hz, 1H, Ar), 6.58 (d, *J* (H,H) = 9 Hz, 1H, Ar), 6.48 (s, 1H, \underline{CH}_3), 3.40 (q, *J* (H,H) = 7 Hz, 4H, $-\underline{CH}_2-CH_3$), 2.57 (t, *J* (H,H) = 7 Hz, 6H, $-CH_2-\underline{CH}_3$); RMN ¹³C (125 MHz, CDCl₃, TMS) δ (ppm) = 161.0, 160.4, 156.1, 150.9, 148.2, 140.6, 140.2, 132.8, 129.7, 113.4, 109.8, 109.4, 109.2, 97.8, 45.0, 25.1, 12.6; FT-IR (KBr) $\nu_{max} = 1714 \text{ cm}^{-1}$ (C=O lactone), 1620 cm⁻¹ (C=C Ar); UV–Vis (MeOH) $\lambda_{max} = 433 \text{ nm}$; HRMS (ESI m/z) Calcd. for C₂₀H₂₀N₄O₂ [M+H]⁺ 349.1659, found 349.1671.

(dd, J (H,H) = 9, 2.5 Hz, 1H, Ar1), 6.51 (s, J (H,H) = 2Hz, 1H, Ar), 3.43 (q, J (H,H) = 7 Hz, 4H, -<u>CH₂</u>-CH₃), 1.22 (t, J (H,H) = 7 Hz, 6H, -CH₂-<u>CH₃</u>); RMN ¹³C (125 MHz, CDCl₃, TMS) δ (ppm) = 161.2, 156.4, 151.2, 150.40, 148.3, 141.7, 140.9, 133.7, 130.0, 113.2, 110.4, 109.6, 109.4, 108.7, 97.3, 45.2, 12.7, FT-IR (KBr) v_{max} = 1702 cm⁻¹ (C=O lactone), 1613 cm⁻¹ (C=C Ar); UV–Vis (MeOH) λ_{max} = 436 nm; HRMS (ESI m/z) Calcd. for C₁₉H₁₈N₄O₂ [M+H]⁺ 335.1503, found 335.1522.

3-(imidazo[1,2-a]pyridin-2-yl)-2H-chromen-2-one (4f): Yield 70%; brown powder; m.p. 297 – 300 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.76 (s, 1H, -<u>CH</u>=C-), 8.53 (s, 1H, -<u>CH</u>=C-), 8.13 (d, J (H,H) = 7 Hz, 1H, Ar), 7.62 (d, J (H,H) = 7.5, 1H, Ar), 7.58 (d, J (H,H) = 9.5 Hz, 1H, Ar), 7.52 (t, J (H,H) = 7.5 Hz, 1H, Ar), 7.37 (d, J (H,H) = 8 Hz, 1H, Ar), 7.31 (t, J (H,H) = 7.5 Hz, 1H, Ar), 7.21 (t, J (H,H) = 6.5 Hz, 1H, Ar), 6.79 (t, J (H,H) = 6.5 Hz, 1H, Ar); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 160.2, 153.3, 145.4, 138.5, 138.3, 131.63, 128.6, 126.5, 126.0, 124.9, 121.1, 120.0, 117.4, 116.7, 114.2, 112.8; FT-IR (KBr) v_{max} = 1726 cm⁻¹ (C=O lactone), 1636 cm⁻¹ (C=C Ar); UV–Vis (MeOH) λ_{max} = 345 nm; HRMS (ESI m/z) Calcd. for C₁₆H₁₀N₂O₂ [M+H]⁺ 263.0815, found 263.0820.

bet 8-ethoxy-3-(imidazo[1,2-a]pyridin-2-yl)-2H-chromen-2-one (4g): Yield: 41%, dark brown powder; m.p. = 157 – 159 °C, RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.75 (s, 1H, $-\underline{CH}=C-$), 8.57 (s, 1H, $-\underline{CH}=C-$), 7.14 (d, J (H,H) = 6.5 Hz, 1H, Ar), 7.59 (d, J (H,H) = 6.5 Hz, 1H, Ar), 7.20 (m, 3H, Ar), 7.07 (d, 1H, Ar), 6.78 (t, J (H,H) = 6.5 Hz, 1H, Ar), 4.21 (q, J (H,H) = 7 Hz, 2H, $-\underline{CH}_2$ -CH₃), 1.52 (t, J (H,H) = 7 Hz, 3H, $-CH_2-\underline{CH}_3$); RMN ¹³C (1 25 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 159.65, 146.40, 145.20, 143.01, 138.36, 138.33, 126.28, 125.80, 124.53, 121.09, 120.54, 119.86, 117.21, 114.56, 114.07, 112.62, 65.07, 14.90. FT-IR (KBr) v_{max} = 1724 cm⁻¹ (C=O lactone); UV-Vis (MeOH) λ_{max} = 340 nm; HRMS (ESI m/z) Calcd. for C₁₈H₁₅N₂O₃ [M+H]⁺ 307.1077, found 307.1068.

3. General procedure for coumarin-imidazo[1,2-a]pyridine-3-carbaldehyde derivatives 5a-e.

Synthesis of **5a-e** was carried out using the Vilsmeier-Haack formilation.[3] In a 50 mL round bottom flask was added **4a-e** derivatives (1mmol), then was purged with nitrogen, 15 mL of DMF was added and placed in agitation. In a second 50 mL round bottom flask with nitrogen atmosphere DMF was added and placed in an ice bath for 10 min (2.2 mmol). POCl₃ were slowly added (2.4 mmol) and the mixture was kept in constant agitation in an ice bath for 15 min. Finally, the solution from the first flask was transferred to the second flask through a steel cannula and heated to 60 °C for 1 h. The reaction was treated with 10% NaOH solution and a solid product was formed. The product was filtered and purified using a chromatographic column with an Hex/AcOEt 70:30 elution system.

2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)imidazo[1,2-a]pyridine-3-

carbaldehyde (5a): Yield 94%; yellow powder; m.p. 228 – 229.6 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 10.22 (s, 1H, -COH), 9.61 (d, *J* (H,H) = 6.5 Hz, 1H, Ar), 8.24 (s, 1H, -CH=C-), 7.70 (d, *J* (H,H) = 9 Hz, 1H, Ar), 7.50 (t, *J* (H,H) = 8.5-1.5 Hz, 1H, Ar), 7.36 (d, *J* (H,H) = 9 Hz, 1H, Ar), 7.05 (t, *J* (H,H) = 6.1 Hz, 1H, Ar), 6.60 (d, *J* (H,H) = 9, 2.5 Hz, 1H, Ar), 6.50 (s, *J* (H,H) = 2.5, 1H, -CH=C-), 3.43 (q, *J* (H,H) = 7.5 Hz, 4H, $-CH_2$ -CH₃), 1.21 (t, *J* (H,H) = 7.5 Hz, 6H, CH_3); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 181.5, 177.2, 171.7, 171.1, 167.6, 165.6, 150.1, 149.9, 148.8, 141.0, 137.0, 135.1, 132.6, 129.5, 128.7, 97.1, 45.2, 12.7; FT-IR (KBr) $v_{max} = 2736 \text{ cm}^{-1}$ (H–C=O), 1698 cm⁻¹ (C=O lactone), 1647 cm⁻¹ (H–C=O); UV–Vis (MeOH) $\lambda_{max} = 422 \text{ nm}; \text{HRMS}$ (ESI m/z) Calcd. for C₂₀H₁₈N₄O₃ [M+H]⁺ 362.1499, found 362.1495.

Figure SI-3. HMBC NMR spectra of 5a on CDCl₃

2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-7-methylimidazo[1,2-

a]pyridine-3-carbaldehyde (5b): Yield 97%; yellow powder; m.p. $174 - 176^{\circ}$ C; RNM ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 10.35 (s, 1H, $-CO\underline{H}$), 9.65 (d, J (H,H) = 7 Hz, 1H, Ar), 8.79 (s, 1H, $-\underline{CH}$ =C-), 8.01 (s, 1H, Ar), 7.50 (d, J (H,H) = 9 Hz, 1H, Ar), 7.20 (d, J (H,H) = 7 Hz, 1H, Ar), 6.67 (dd, J (H,H) = 9, 2.5 Hz, 1H, Ar), 6.51 (sd, J (H,H) = 2 Hz, 1H, Ar), 3.49 (q, J (H,H) = 7 Hz, 4H, $-\underline{CH}_2$ -CH₃), 2.59 (s, 3H, \underline{CH}_3), 1.26 (t, J (H,H) = 7 Hz, 6H, \underline{CH}_3); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 181.6. 160.9, 158.1, 153.3, 148.1, 131.9, 128.8, 120.5, 119.3, 113.4, 110.5, 109.0, 97.1, 45.5, 29.2, 12.8. FT-IR (KBr) $v_{max} = 2687$ cm⁻¹ (<u>H</u>-C=O), 1716 cm⁻¹ (C=O lactone), 1600 cm⁻¹ ($-O-\underline{C=O}$); UV–Vis (MeOH) $\lambda_{max} = 422$ nm.

Figure SI-11. UV-Vis spectra of 5b in MeOH.

⁶ 6-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)imidazo[2,1-b]thiazole-5-

carbaldehyde (5c): Yield 60%; brown powder; m.p. 194 – 196°C; ¹H RMN (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 10.20 (s, 1H, -COH), 8.38 (d, *J* (H,H) = 4.5 Hz, 1H, -CH=C–), 8.26 (s, 1H, -CH=C–), 7.35 (d, *J* (H,H) = 9 Hz, 1H, Ar), 6.98 (d, *J* (H,H) = 4.5 Hz, 1H, -CH=C–), 6.60 (dd, *J* (H,H) = 9, 2 Hz, 1H, Ar), 6.49 (sd, *J* = 2 Hz, 1H, Ar), 3.43 (q, *J* (H,H) = 7 Hz, 4H, $-CH_2$ –CH₃), 1.21 (t, *J* (H,H) = 7 Hz, 6H, <u>CH₃</u>); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 180.5, 161.4, 157.1, 155.0, 151.8, 150.3, 144.8, 130.2, 124.7, 122.0, 114.4, 113.0, 109.7, 108.9, 97.1, 45.2, 12.7; FT-IR (KBr) v_{max} = 2743 cm⁻¹ (H–C=O), 1699 cm⁻¹ (C=O lactone), 1619 cm⁻¹ (H–C=O); UV–Vis (MeOH) λ_{max} = 425 nm; HRMS (ESI m/z) Calcd. for C₁₉H₁₇N₃O₃S [M+H]⁺ 368.1063, found 368.1062.

Figure SI-12. ¹H NMR spectra of 5c on CDCl₃ 500 MHz

Figure SI-15. IR spectra for 5c in KBr.

Figure SI-16. UV-Vis spectra of 5c in MeOH.

Et₂N⁻⁻ 2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-7-methylimidazo[1,2a]pyrimidine-3-carbaldehyde (5d): Yield 76%; orange powder; m.p. 778-779.3°C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 10.41 (s, 1H, -COH), 9.66 (d, J (H,H) = 7.5 Hz, 1H, Ar), 8.52 (d, J (H,H) = 7.5 Hz, 1H, Ar), 8.43 (s, 1H, -CH=C-), 7.44 (d, J (H,H) = 9 Hz, 1H, Ar), 6.66 (dd, J (H,H) = 9, 2.5 Hz, 1H, Ar), 6.52 (sd, J = 2.5 Hz, 1H, Ar), 3.49 (q, J (H,H) = 7.5 Hz, 4H, $-CH_2$ -CH₃), 2.16 (s, 3H, CH₃), 1.26 (t, J (H,H) = 7.5 Hz, 6H, CH₃); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 182.6, 161.3, 161.3, 157.7, 152.6, 146.7, 138.6, 130.9, 111.3, 110.2, 109.0, 107.1, 97.2, 53.7, 45.4, 19.8; FT-IR (KBr) v_{max} = 1711 cm⁻¹ (C=O lactone), 1619 cm⁻¹ (H-C=O); UV-Vis (MeOH) λ_{max} = 431 nm; HRMS (ESI m/z) Calcd. for C₂₁H₂₀N₄O₃ [M+H]⁺ 376.1635, found 376.1638.

Figure SI-22. UV-Vis spectra of 5d in MeOH.

2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)imidazo[1,2-a]pyrimidine-3-

carbaldehyde (5e): Yield 63%; orange powder; m.p. 263 – 264.5°C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 10.43 (s, 1H, -COH), 9.93 (dd, *J* (H,H) = 7, 2 Hz, 1H, Ar), 8.76 (d, *J* (H,H) = 2 Hz, 1H, Ar), 8.57 (s, 1H, -CH=C-), 7.43 (d, *J* (H,H) = 9 Hz, 1H, Ar), 7.13 (m, 1H, Ar), 6.65 (dd, *J* (H,H) = 9, 2.5 Hz, 1H, Ar), 6.54 (sd, *J* (H,H) = 2.5 Hz, 1H, Ar), 3.48 (q, *J* (H,H) = 7 Hz, 4H, $-CH_2$ -CH₃), 1.26 (t, *J* (H,H) = 7 Hz, 6H, CH_3); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 182.8. 161.7, 157.7, 154.2, 152.3, 151.7, 150.4, 147.0, 136.9, 130.8, 119.3, 112.3, 111.3, 110.1, 109.2, 97.2, 45.3, 12.8. FT-IR (KBr) $v_{max} = 2700$ cm⁻¹ (H–C=O), 1714 cm⁻¹ (C=O lactone), 1618 cm⁻¹ (H–C=O); UV–Vis (MeOH) $\lambda_{max} = 431$ nm.

Figure SI-25. ¹³C NMR spectra of 5e on CDCl₃ 125 MHz.

4. General procedure for 3-bromo-2-(cumarin-3-il)imidazo[1,2-a]pyridine derivatives 6a-h

In a 15 mL round bottom flask, **4a-h** derivatives (0.6 mmol) and acetic acid was added (4 mL), the solution was maintained in agitation and heating at 50 °C for 5 minutes. Later, Br_2 were added (0.7 mmol) and a brown precipitate was generated. The solid was filtered, dissolved in dichloromethane and washed with a saturated solution of NaHCO₃. The organic phase was concentrated and purified by chromatographic column in Hex/AcOEt 80:20 elution system.

Et₂N **3**-(*3*-bromoimidazo[1,2-a]pyridin-2-yl)-7-(diethylamino)-2H-chromen-2-one (6a): Yield 97%; yellow powder; m.p. = 160 – 163 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.155 (d, *J* (H,H) = 8 Hz, 1H, Ar), 8.029 (s, 1H, $-\underline{CH}=C-$), 7.625 (d, *J* (H,H) = 7.5 Hz, 1H, Ar), 7.339 (d, *J* (H,H) = 7 Hz, 1H, Ar), 7.25 (t, *J* (H,H) = 7 Hz, 1H, Ar), 6.932 (t, *J* (H,H) = 7 Hz, 1H, Ar), 6.604 (d, *J* (H,H) = 9 Hz, 1H, Ar), 6.535 (s, 1H, Ar), 3.427 (q, *J* (H,H) = 7 Hz, 4H, $-\underline{CH}_2$ -CH₃), 1.221 (t, *J* (H,H) = 7 Hz, 6H, \underline{CH}_3), RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 160.128, 156.883, 151.098, 145.350, 144.370, 139.570, 129.495, 125.103, 123.997, 117.613, 113.432, 113.196, 109.111, 108.688, 97.151, 44.935, 12.522; FT-IR (KBr) v_{max} = 3027 cm⁻¹ (C-H Ar), 2968 cm⁻¹ (C-H Aliphatic), 1711 cm⁻¹ (C=O lactone), 1598 cm⁻¹ (C=C Ar); UV– Vis (MeOH) λ_{max} = 402.41 nm; HRMS (ESI m/z) Calcd. for C₂₀H₁₉BrN₃O₂ [M+H]⁺ 412.0655, found 412.0640.

Figure SI-29. ¹H NMR spectra of 6a on CDCl₃ 500 MHz

chromen-2-one (6b): Yield 95%; yellow powder; m.p. = 171 - 174 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.004 – 7.988 (m, 2H, Ar), 7.335 – 7.297 (m, 2H, Ar), 6.726 (d, *J* (H,H) = 7 Hz, 1H, Ar), 6.576 (d, *J* (H,H) = 9 Hz, 1H, Ar), 6.509 (s, 1H, Ar), 3.407 (q, *J* (H,H) = 7 Hz, 4H, -<u>CH₂</u>-CH₃), 2.396 (s, 3H, <u>CH₃</u>), 1.194 (t, *J* (H,H) = 7 Hz, 6H, <u>CH₃</u>); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 160.116, 0156.874, 151.064, 145.778, 144.159, 139.287, 136.121, 129.449 , 123.179, 116.035, 115.786, 113.825, 109.101, 108.804, 97.238, 93.792, 44.946 , 21.409, 12.556; FT-IR (KBr) v_{max} = 3079 cm⁻¹ (C-H Ar), 2925 cm⁻¹ (C-H Aliphatic), 1723 cm⁻¹ (C=O lactone), 1608 cm⁻¹ (C=C Ar); UV-Vis (MeOH) λ_{max} = 406.16 nm; HRMS (ESI m/z) Calcd. for C₂₁H₂₁BrN₃O₂ [M+H]⁺ 426.0812, found 426.0844.

Figure SI-36. ¹³C NMR spectra of 6b on CDCl₃ 125 MHz.

Et₂N **3-(5-bromoimidazo[2,1-b]thiazol-6-yl)-7-(diethylamino)-2H-chromen-2-one** (6c): Yield 80%; yellow powder; m.p. = 140 – 142 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 7.886 (s, 1H, $-\underline{CH}=C-$), 7.352 (d, J (H,H) = 4.5 Hz, 1H, $-\underline{CH}=C-$), 7.276 (d, J (H,H) = 9 Hz, 1H, Ar), 6.889 (d, J (H,H) = 4.5 Hz, 1H, $-\underline{CH}=C-$), 6.547 (d, J (H,H) = 9 Hz, 1H, Ar), 6.473 (s, 1H, Ar), 3.380 (q, J (H,H) = 7.5 Hz, 4H, $-\underline{CH}_2-CH_3$), 1.174 (t, J (H,H) = 7.5 Hz, 6H, \underline{CH}_3); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 160.075, 156.649, 150.957, 148.642, 143.399, 140.435, 129.312, 117.579, 113.499, 113.250, 109.089, 108.600, 97.132, 93.159, 44.884, 12.488; FT-IR (KBr) v_{max} = 3089 cm⁻¹ (C-H Ar), 2928 cm⁻¹ (C-H Aliphatic), 1719 cm⁻¹ (C=O lactone), 1605 cm⁻¹ (C=C Ar); UV-Vis (MeOH) λ_{max} = 404.87 nm; HRMS (ESI m/z) Calcd. for C₁₈H₁₇BrN₃O₂S [M+H]⁺ 418.0219, found 418.0150.

Figure SI-42. ¹³C NMR spectra of 6c on CDCl₃ 125 MHz.

3-(3-bromo-7-methylimidazo[1,2-a]pyrimidin-2-yl)-7-(diethylamino)-2H-

chromen-2-one (6d): Yield 92%; yellow powder; m.p. = 218 – 220 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.269 (d, J (H,H) = 7 Hz, 1H, Ar), 8.144 (s, 1H, -<u>CH</u>=C-), 7.310 (d, J (H,H)= 9 Hz, 1H, Ar), 6.574 (d, J (H,H) = 7 Hz, 1H, Ar), 6.558 (d, J (H,H) = 9 Hz, 1H, Ar), 6.476 $(s, 1H, Ar), 3.394 (q, J(H,H) = 7.5 Hz, 4H, -CH_2-CH_3), 2.619 (s, 3H, CH_3), 1.184 (t, J(H,H) = 7.5 Hz, 4H, -CH_2-CH_3), 2.619 (s, 3H, CH_3), 1.184 (t, J(H,H) = 7.5 Hz, 4H, -CH_2-CH_3), 2.619 (s, 3H, CH_3), 1.184 (t, J(H,H) = 7.5 Hz, 4H, -CH_2-CH_3), 2.619 (s, 3H, CH_3), 1.184 (t, J(H,H) = 7.5 Hz, 4H, -CH_2-CH_3), 2.619 (s, 3H, CH_3), 1.184 (t, J(H,H) = 7.5 Hz, 4H, -CH_2-CH_3), 2.619 (s, 3H, CH_3), 1.184 (t, J(H,H) = 7.5 Hz, 4H, -CH_2-CH_3), 2.619 (s, 3H, CH_3), 1.184 (t, J(H,H) = 7.5 Hz, 4H, -CH_2-CH_3), 2.619 (s, 3H, CH_3), 1.184 (t, J(H,H) = 7.5 Hz, 4H, -CH_2-CH_3), 2.619 (s, 3H, CH_3), 1.184 (t, J(H,H) = 7.5 Hz, 4H, -CH_2-CH_3), 2.619 (s, 3H, CH_3), 1.184 (t, J(H,H) = 7.5 Hz, 4H, -CH_2-CH_3), 2.619 (s, 3H, CH_3), 1.184 (t, J(H,H) = 7.5 Hz, 4H, -CH_2-CH_3), 2.619 (s, 3H, CH_3), 2.619 (s, 3H$ Hz, 6H, <u>CH</u>₃); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 160.569, 159.694, 156.941, 151.218, 148.026, 144.926 , 140.505, 130.778, 129.712, 113.245, 110.340, 108.852, 97.078, 92.515, 44.949, 24.963, 12.527; FT-IR (KBr) $v_{max} = 3083$ cm⁻¹ (C–H Ar), 2972 cm⁻¹ (C–H Aliphatic), 1711 cm⁻¹ (C=O lactone), 1620 cm⁻¹ (C=C Ar); UV–Vis (MeOH) $\lambda_{max} = 423.00$ nm; HRMS (ESI m/z) Calcd. for C₂₀H₂₀BrN₄O₂ [M+H]⁺ 427.0764, found 427.0769.

Figure SI-47. ¹H NMR spectra of 6d on CDCl₃ 500 MHz

Figure SI-48. ¹³C NMR spectra of 6d on CDCl₃ 125 MHz.

EVALUATE: 3-(3-bromoimidazo[1,2-a]pyrimidin-2-yl)-7-(diethylamino)-2H-chromen-2one (6e): Yield 81%; yellow powder; m.p. = 121 - 125 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.565 (d, J (H,H) = 4 Hz, 1H, Ar), 8.458 (d, J (H,H) = 6.5 Hz, 1H, Ar), 8.165 (s, 1H, -<u>CH</u>=C-), 7.338 (d, J (H,H) = 8.5 Hz, 1H, Ar), 7.000 (t, J (H,H) = 6 Hz, 1H, Ar), 6.581 (d, J (H,H) = 8.5 Hz, 1H, Ar), 6.501 (s, 1H, Ar), 3.415 (q, J (H,H) = 7.5 Hz, 4H, -<u>CH₂</u>-CH₃), 1.203 (t, J (H,H) = 7.5 Hz, 6H, <u>CH₃</u>); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 159.756, 157.059, 151.376, 150.348, 147.958, 145.349, 141.283, 131.542, 129.859, 112.617, 109.566, 109.302, 108.753, 97.066, 93.628, 45.006, 12.338; FT-IR (KBr) v_{max} = 3085 cm⁻¹ (C-H Ar), 2971 cm⁻¹ (C-H Aliphatic), 1717 cm⁻¹ (C=O lactone), 1598 cm⁻¹ (C=C Ar); UV–Vis (MeOH) $\lambda_{max} = 408.14$ nm; HRMS (ESI m/z) Calcd. for $C_{19}H_{18}BrN_4O_2$ [M+H]⁺ 413.0608, found 413.0614.

Figure SI-53. ¹H NMR spectra of 6e on CDCl₃ 500 MHz

Figure SI-55. HMBC NMR spectra of 6e on CDCl₃

Figure SI-58. ESI-MS chromatogram of 6e.

3-(3-bromoimidazo[1,2-a]pyridin-2-yl)-2H-chromen-2-one (6f): Yield 98%; brown powder; m.p. = $195 - 197 \,^{\circ}$ C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.200 (m, 2H, Ar), 7.664 (d, J (H,H) = 7 Hz, 1H, Ar), 7.592 - 7.557 (m, 2H, Ar), 7.419 (d, J (H,H) = 9 Hz, 1H, Ar), 7.320 - 7.310 (m, 2H, Ar), 6.986 (t, J (H,H) = 7 Hz, 1H, Ar); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 158.909, 154.018, 145.469, 143.842, 138.235, 132.138, 128.376, 125.639, 00, 124.156, 121.382, 119.166, 117.860, 116.691, 113.609, 95.432; FT-IR (KBr) $v_{max} = 3040 \text{ cm}^{-1}$ (C-H Ar), 2922 cm⁻¹ (C-H Aliphatic), 1722 cm⁻¹ (C=O lactone), 1632 cm⁻¹ (C=C Ar); UV-Vis (MeOH) $\lambda_{max} = 335.14$ nm; HRMS (ESI m/z) Calcd. for $C_{16}H_{10}BrN_2O_2$ [M+H]⁺ 340.9920, found 340.9923.

Figure SI-59. ¹H NMR spectra of 6f on CDCl₃ 500 MHz

Figure SI-60. ¹³C NMR spectra of 6f on CDCl₃ 125 MHz.

OET 3-(3-bromoimidazo[1,2-a]pyridin-2-yl)-8-ethoxy-2H-chromen-2-one (**6g**): Yield 56%; dark brown powder; m.p. = 158 – 161 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.184 – 8.168 (m, 2H, Ar), 7.638 (sd, *J* (H,H) = 9 Hz, 1H, Ar), 7.287 (d, *J* (H,H) = 8.5 Hz, 1H, Ar), 7.201 (t, *J* (H,H) = 7.5 Hz, 1H, Ar), 7.132 (d, *J* (H,H) = 8 Hz, 1H, Ar), 7.094 (d, *J* (H,H) = 8 Hz, 1H, Ar), 6.962 (t, *J* (H,H) = 7 Hz, 1H, Ar), 4.203 (q, *J* (H,H) = 7.5 Hz, 1H, $-CH_2$ -CH₃), 1.513 (t, *J* (H,H) = 7.5 Hz, 1H, CH_3); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 158.620, 146.580, 145.542, 144.212, 143.985, 138.401, 125.674, 124.574, 124.124, 121.668, 119.997, 119.829, 117.889, 115.319, 113.649,95.590, 65.144, 14.911; FT-IR (KBr) v_{max} = 3040 cm⁻¹ (C-H Ar), 2922 cm⁻¹ (C-H Aliphatic), 1722 cm⁻¹ (C=O lactone), 1632 cm⁻¹ (C=C Ar); UV–Vis (MeOH) λ_{max} = 340.05 nm; HRMS (ESI m/z) Calcd. for C₁₈H₁₄BrN₂O₃ [M+H]⁺ 385.0182, found 385.0214.

5-bromo-3-(3-bromoimidazo[1,2-a]pyridin-2-yl)-8-ethoxy-2H-chromen-2-one (6h): Yield 89%; reddish brown; m.p. = 165 – 167 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.480 (s, 1H, $-\underline{CH_2}$ –CH₃), 8.192 (d, *J* (H,H) = 6.5 Hz, 1H, Ar), 7.676 (d, *J* (H,H) = 9 Hz, 1H, Ar), 7.427 (d, *J* (H,H) = 9 Hz, 1H, Ar), 7.308 (t, *J* (H,H) = 7 Hz, 1H, Ar), 6.983 – 6.952 (m, 2H, H-6, Ar), 4.188 (q, *J* (H,H) = 7.5 Hz, 1H, $-\underline{CH_2}$ –CH₃), 1.517 (t, *J* (H,H) = 7.5 Hz, 1H, $\underline{CH_3}$); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 157.960, 146.215, 145.619, 144.729, 143.090, 138.033, 128.023, 125.776, 124.232, 122.606, 119.450, 118.080, 115.698, 113.785, 112.302, 95.780, 65.374, 14.807; FT-IR (KBr) v_{max} = 29.24 cm⁻¹ (C–H Aliphatic), 1728 cm⁻¹ (C=O lactone), 1573 cm⁻¹ (C=C Ar); UV–Vis (MeOH) λ_{max} = 316.850 nm; HRMS (ESI m/z) Calcd. for C₁₈H₁₃Br₂N₂O₃ [M+H]⁺ 461.9215, found 462.9295.

Figure SI-71. ¹H NMR spectra of 6h on CDCl₃ 500 MHz

Figure SI-72. ¹³C NMR spectra of 6h on CDCl₃ 125 MHz.

5. General procedure of coumarin-imidazo[1,2-*a*]pyridine-3-acrylates derivatives 7a-h Method A: Alkenylation by C–H bond activation.

In a 15 mL round bottom flask **4a** (0.5 mmol), catalyst (15% mol), phase transfer agent (TA, 1 mmol), and base (1 mmol) were added according to the reagents shown in Table 1, the flask was sealed and purged with nitrogen, 5 mL of DMF and 2 mmol of methyl acrylate were injected into the flask. The flask was kept at 100 °C and shaken constantly for 7 days. The reaction crude was treated by adding distilled water, which caused the precipitation of the medium, the solid was filtered and redissolved in dichloromethane, the solution was filtered again through a buchner funnel packed with celite, the collected solution was washed with three volumes of NaHCO₃ saturated solution, the organic phase was concentrated and the solid was purified by chromatographic column in Hex/AcOEt 80:20 elution system.

		↓ O ↓ OMe	DMF, 100 °C				
Entry	Catalyst	Base	TAª	t (days)	(%) R		
1	Pd(OAc) ₂ (15%)			2	30		
2	PdCl ₂ (15%)			7	22		
3	Palladium Dichloro- N,N,N'N'- (Tetramethylethylen ediamine) (II) (15%)	NaHCO3	Hexadecyltrimet hylammonium Bromide (C ₁₉ H ₄₂ BrN)	7	18		
4	- Pd(OAc) ₂ (15%) $-$	CaCO ₃		7	18		
5		t-BuOK		7	15		
6		NaHCO ₃	Tetrabutylammo nium acetate	7			
7	-			7			
aTA : Transf	er agent						

Table S1. Condition optimization for C-H bond activation.

Method B: Method B: Heck reaction

In a 15 mL round bottom flask, **6a-j** (0.5 mmol), catalyst (15% mol), BINAP (30% mol), base (1 mmol) and AgOAc (1 mmol) were added. Table 2 shows the reagents used. The flask was sealed and purged with nitrogen, then solvent (5 mL) and methyl acrylate (2 mmol) were injected, the flask was kept at 100 °C and stirred (2-7 days). The reaction was treated by adding distilled water which caused the precipitation of the medium, the solid was filtered and redissolved in dichloromethane, the collected solution was washed with three volumes of NaHCO₃ saturated solution, the organic phase was concentrated and purified by chromatographic column in Hex/AcOEt 80:20 elution system.

Table S2. Condition optimization for Heck reaction.											
Et	2N 6	+ ON	Conditie le	Et ₂ N	7	N N N N O MeO	0				
Entry	Catalyst	Solvent	Base	Aditive	T (°C)	%R	t (days)				
1	_	DMF			_	70	2				
2	$Pd(OAc)_2 (15\%)$				100	78	2				
3		Dioxane	-		-	85	2				
4		THF			66	60	7				
5	PdCl ₂ (15%)		- NaHCO ₃	$Ag(OAc)_2$	_	80	7				
6	Palladium Dichloro- N,N,N'N'- (Tetramethylethylene diamine) (II) (15%)	Dioxane			100	66	7				
7	$Pd(OAc)_2$ (15%)		CaCO ₃	-	-	85	2				
8	$Pd(OAc)_2$ (15%)		t-BuOK	_	-	67	2				
9	- Pd(OAc) ₂ (15%)		CaCO ₃	-	-	87	2				

 Table S2. Condition optimization for Heck reaction

MeO^{-O} Methyl (E)-3-(2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)imidazo[1,2a]pyridin-3-yl)acrylate (7a): Yield 87%; yellow powder; m.p. = 219 – 223 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.391 (d, J (H,H) = 6.5 Hz, 1H, Ar), 8.013 – 7.999 (m, 2H, Ar), 7.659 (d, J (H,H) = 9 Hz, 1H, Ar), 7.329 – 7.311 (m, 2H, Ar), 6.965 (d, J (H,H) = 7 Hz, 1H, Ar), 6.587 (d, J (H,H) = 9 Hz, 1H, Ar), 6.525 (s, 1H, Ar), 7.206 (d, J (H,H) = 16 Hz, 1H, $-\underline{CH}=C-$), 3.758 (s, 1H, \underline{CH}_3), 3.417 (q, J (H,H) = 7.5 Hz, 4H, $-\underline{CH}_2$ –CH₃), 1.210 (t, J (H,H) = 7.5 Hz, 6H, \underline{CH}_3); RMN ¹³C (125 MHz, CDCl₃, TMS) δ (ppm): CDCl₃, 25 °C, TMS) δ (ppm) = 167.734, 160.559, 157.095, 151.356, 147.035, 145.191, 145.160, 130.231, 129.705, 126.609, 125.141, 118.770, 118.095, 114.177, 114.067, 113.992, 109.283, 108.727, 97.157, 51.772, 44.985, 12.532; FT-IR (KBr) ν_{max} = 3020 cm⁻¹ (C–H Ar), 2969 cm⁻¹ (C–H Aliphatic), 1714 cm⁻¹ (C=O lactone), 1619 cm⁻¹ (–O–<u>C=O</u>), 1595 cm⁻¹ (C=C Ar); UV–Vis (MeOH) λ_{max} = 415.15 nm; HRMS (ESI m/z) Calcd. for C₂₄H₂₄N₃O₄ [M+H]⁺ 418.1761, found 418.1770.

Figure SI-81. UV-Vis spectra of 7a in MeOH.

Figure SI-82. Emission spectra of 7a in MeOH.

Meo^{\sim 0} Methyl (E)-3-(2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-7methylimidazo[1,2-a]pyridin-3-yl)acrylate (7b): Yield 85%; yellow powder; m.p. = 188 – 190 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.276 (d, J (H,H) = 7 Hz, 1H, Ar), 8.026 – 7.991 (m, 1H, Ar), 7.420 (s, 1H, Ar), 7.323 (d, J (H,H) = 8 Hz, 1H, Ar), 8.000 (d, J (H,H) = 6.5 Hz, 1H, Ar), 6.600 (d, J (H,H) = 9 Hz, 1H, Ar), 6.532 (s, 1H, Ar), 6.159 (d, J (H,H) = 16 Hz, 1H, -<u>CH</u>=C-), 3.761 (s, 3H, <u>CH₃</u>), 3.426 (q, J (H,H) = 7 Hz, 4H, -<u>CH₂</u>-CH₃), 2.431 (s, 3H, <u>CH₃</u>), 1.220 (t, J (H,H) = 7.5 Hz, 6H, H-7b'); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 167.900, 160.632, 157.099, 151.338, 147.631, 145.387, 145.111, 138.060, 130.413, 129.705, 124.513, 118.396, 116.651, 116.575, 114.370, 113.056, 109.274, 108.7996, 97.207, 51.854, 45.119, 21.562, 12.670; FT-IR (KBr) $v_{max} = 2925 \text{ cm}^{-1}$ (C–H Aliphatic), 1708 cm⁻¹ (C=O lactone), 1619 cm⁻¹ (–O–<u>C=O</u>), 1608 cm⁻¹ (C=C Ar); UV–Vis (MeOH) $\lambda_{max} = 415.81 \text{ nm}$; HRMS (ESI m/z) Calcd. for $C_{25}H_{26}N_3O_4$ [M+H]⁺ 432.1918, found 432.1919.

Figure SI-84. ¹H NMR spectra of 7b on CDCl₃ 500 MHz

Figure SI-88. UV-Vis spectra of 7a in MeOH.

MeO^{-O} Methyl (E)-3-(6-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)imidazo[2,1b]thiazol-5-yl)acrylate (7c): Yield 46%; yellow powder; m.p. = 185 – 188 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 7.962 – 7.929 (m, 2H, H-3a, Ar), 7.739 (d, J (H,H) = 4.5 Hz, 1H, $-\underline{CH}=C-$), 7.327 (d, J (H,H) = 9 Hz, 1H, Ar), 7.009 (6, J (H,H) = 4.5 Hz, 1H, $-\underline{CH}=C-$), 6.598 (d, J (H,H) = 9 Hz, 1H, Ar), 6.521 (s, 1H, Ar), 6.068 (d, J (H,H) = 16 Hz, 1H, $-\underline{CH}=C-$), 3.762 (s, 1H, \underline{CH}_3), 3.432 (q, J (H,H) = 7.5 Hz, 1H, $-\underline{CH}_2$ -CH₃), 1.216 (t, J (H,H) = 7.5 Hz, 1H, \underline{CH}_3); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 167.537, 160.860, 156.948, 153.227, 151.315, 146.719, 144.502, 131.192, 129.682, 121.207, 119.429, 114.080, 113.924, 112.264, 109.320, 108.320, 97.174, 51.809, 45.023, 12.565; FT-IR (KBr) v_{max} = 3115 cm⁻¹ (C-H Ar), 2972 cm⁻¹ (C-H

Aliphatic), 1709 cm⁻¹ (C=O lactone), 1617 cm⁻¹ ($-O-\underline{C=O}$), 1595 cm⁻¹ (C=C Ar); UV–Vis (MeOH) $\lambda_{max} = 416.21$ nm; HRMS (ESI m/z) Calcd. for $C_{22}H_{22}N_3O_4S$ [M+H]⁺ 424.1326, found 424.1332.

Figure SI-91. ¹H NMR spectra of 7c on CDCl₃ 500 MHz

Figure SI-95. UV-Vis spectra of 7c in MeOH.

Figure SI-97. ESI-MS chromatogram of **7c**.

MeO^{NO} Methyl (E)-3-(2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-7methylimidazo[1,2-a]pyrimidin-3-yl)acrylate (7d): Yield 65%; yellow powder; m.p. = 229 – 231 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.567 (d, J (H,H) = 6 Hz, 1H, Ar), 8.249 (s, 1H, $-\underline{CH}=C-$), 8.113 (d, J (H,H) = 16.5 Hz, 1H, $-\underline{CH}=C-$), 7.357 (d, J (H,H) = 8.5 Hz, 1H, Ar), 6.892 (t, J (H,H) = 7 Hz, 1H, Ar), 6.620 (d, J (H,H) = 9 Hz, 1H, Ar), 6.531 (s, 1H, Ar), 6.129 (d, J (H,H) = 16.5 Hz, 1H, $-\underline{CH}=C-$), 3.779 (s, 3H, \underline{CH}_3), 3.442 (q, J (H,H) = 7 Hz, 4H, $-\underline{CH}_2-CH_3$), 2.663 (s, 3H, \underline{CH}_3), 1.231 (t, J (H,H) = 7 Hz, 6H, \underline{CH}_3); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 167.511, 161.84, 160.494, 157.221, 151.546, 149.904, 146.012, 145.938, 132.288, 130.688, 130.044, 116.767, 114.395, 113.772, 110.816, 109.434, 108.975, 97.105, 51.922, 45.082,

25.145, 12.593; FT-IR (KBr) $v_{max} = 3046 \text{ cm}^{-1}$ (C–H Ar), 2963 cm⁻¹ (C–H Aliphatic), 1719 cm⁻¹ (C=O lactone), 1621 cm⁻¹ (–O–<u>C=O</u>), 1593 cm⁻¹ (C=C Ar); UV–Vis (MeOH) $\lambda_{max} = 423.07 \text{ nm}$; HRMS (ESI m/z) Calcd. for $C_{24}H_{25}N_4O_4$ [M+H]⁺ 433.1870, found 433.1872.

Figure SI-98. ¹H NMR spectra of 7d on CDCl₃ 500 MHz

Figure SI-103. Emission spectra of 7d in MeOH.

MeO^{NO} Methyl (E)-3-(2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)imidazo[1,2a]pyrimidin-3-yl)acrylate (7e): Yield 43%; yellow powder; m.p. = 262 – 264 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.732 (d, J (H,H) = 6 Hz, 1H, Ar), 8.602 (d, J (H,H) = 4.5 Hz, 1H, Ar), 8.206 (s, 1H, $-\underline{CH}=C-$), 8.069 (d, J (H,H) = 16.5 Hz, 1H, $-\underline{CH}=C-$), 7.342 (d, J (H,H) = 9 Hz, 1H, Ar), 7.036 (t, J (H,H) = 7 Hz, 1H, Ar), 6.593 (d, J (H,H) = 9 Hz, 1H, Ar), 6.500 (s, J (H,H) = 7 Hz, 1H, Ar), 6.173 (d, J (H,H) = 16.5 Hz, 1H, $-\underline{CH}=C-$), 3.744 (s, 1H, \underline{CH}_3), 3.420 (q, J (H,H) = 7 Hz, 4H, \underline{CH}_2-CH_3), 1.208 (t, J (H,H) = 7 Hz, 6H, \underline{CH}_3); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 167.278, 160.372, 157.201, 151.571, 151.207, 149.626, 146.19, 146.091, 132.891, 130.199, 130.019, 117.050, 115.356, 113.361, 109.953, 109.441, 108.783, 96.988, 51.895, 45.023, 12.525; FT-IR (KBr) ν_{max} = 3067 cm⁻¹ (C–H Ar), 2968 cm⁻¹ (C–H Aliphatic), 1711 cm⁻¹ (C=O lactone), 1616 cm⁻¹ (–O–<u>C=O</u>), 1588 cm⁻¹ (C=C Ar); UV–Vis (MeOH) λ_{max} = 422.98 nm; HRMS (ESI m/z) Calcd. for C₂₃H₂₃N₄O₄ [M+H]⁺ 419.1714, found 419.1625.

Figure SI-105. ¹H NMR spectra of 7e on CDCl₃ 500 MHz

Figure SI-109. UV-Vis spectra of 7e in MeOH.

MeO^{NO} Methyl (E)-3-(2-(2-oxo-2H-chromen-3-yl)imidazo[1,2-a]pyridin-3-yl)acrylate (7f): Yield 81%; light brown powder; m.p. = 208 – 210 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.399 (d, J (H,H) = 7 Hz, 1H, Ar), 8.162 (s, 1H, $-\underline{CH}=C-$), 7.999 (d, J (H,H) = 16 Hz, 1H, $-\underline{CH}=C-$), 7.684 (d, J (H,H) = 9 Hz, 1H, Ar), 7.571 (m, 2H, H-7', Ar), 7.395 – 7.303 (m, 3H, Ar), 7.001 (t, J (H,H) = 7 Hz, 1H, Ar), 6.221 (d, J (H,H) = 16 Hz, 1H, $-\underline{CH}=C-$), 3.762 (s, 1H, \underline{CH}_3); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 167.425, 159.441, 154.189, 147.052, 144.749, 143.339, 132.505, 129.849, 128.572, 126.983, 125.198, 124.850, 122.441, 119.378, 119.153, 118.373, 116.802, 115.267, 114.399, 51.909; FT-IR (KBr) v_{max} = 3071 cm⁻¹ (C–H Ar), 2940 cm⁻¹ (C–H Aliphatic), 1724 cm⁻¹ (C=O lactone), 1705 cm⁻¹ (–O–<u>C=O</u>), 1623 cm⁻¹ (C=C Ar); UV–Vis (MeOH) $\lambda_{max} = 330.17$ nm; HRMS (ESI m/z) Calcd. for $C_{20}H_{15}N_2O_4$ [M+H]⁺ 347.1026, found 347.1032.

Figure SI-112. ¹H NMR spectra of 7f on CDCl₃ 500 MHz

Figure SI-116. UV-Vis spectra of 7f in MeOH.

Met MeO Methyl (E)-3-(2-(8-ethoxy-2-oxo-2H-chromen-3-yl)imidazo[1,2-a]pyridin-3yl)acrylate (7g): Yield 71%; dark brown powder; m.p. = 137 – 141 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.428 (d, J (H,H) = 6.5 Hz, 1H, Ar), 8.180 (s, 1H, $-\underline{CH}=C-$), 8.019 (d, J (H,H) = 16 Hz, 1H, $-\underline{CH}=C-$), 7.713 (d, J (H,H) = 9 Hz, 1H, Ar), 7.373 (d, J (H,H) = 7 Hz, 1H, Ar), 7.227 (d, J (H,H) = 8 Hz, 1H, Ar), 7.157 – 7.140 (m, 2H, Ar), 7.027 (t, J (H,H) = 7 Hz, 1H, Ar), 7.231 (d, J (H,H) = 16 Hz, 1H, $-\underline{CH}=C-$), 4.226 (q, J (H,H) = 7 Hz, 2H, \underline{CH}_2-CH_3), 3.788 (s, 1H, \underline{CH}_3), 1.538 (t, J (H,H) = 7 Hz, 3H, \underline{CH}_3); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 167.460, 159.120, 147.080, 146.631, 145.059, 144.059, 143.303, 129.954, 126.950, 125.220,

124.732, 122.701, 119.957, 119.914, 119.463, 118.408, 115.499, 114.322, 65.173, 51.940, 14.909; FT-IR (KBr) $v_{max} = 2926 \text{ cm}^{-1}$ (C–H Aliphatic), 1720 cm⁻¹ (C=O lactone), 1621 cm⁻¹ (–O–<u>C=O</u>); UV–Vis (MeOH) $\lambda_{max} = 314.90 \text{ nm}$; HRMS (ESI m/z) Calcd. for $C_{22}H_{19}N_2O_5$ [M+H]⁺ 391.1288, found 391.1299.

Figure SI-119. ¹H NMR spectra of 7g on CDCl₃ 500 MHz

Figure SI-120. ¹³C NMR spectra of 7g on CDCl₃ 125 MHz.

Figure SI-122. IR spectra for 7g in KBr.

Met Meo Normal Methyl (E)-3-(8-ethoxy-3-(3-((E)-3-methoxy-3-oxoprop-1-en-1-yl)imidazo[1,2-a]pyridin-2-yl)-2-oxo-2H-chromen-5-yl)acrylate (7h): Yield 61%; dark brown powder; m.p. = 179 – 181 °C; RMN ¹H (500 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 8.557 (s, 1H, $-\underline{CH}=C-$), 8.432 (d, J (H,H) = 7 Hz, 1H, Ar), 8.121 (d, J (H,H) = 15.5 Hz, 1H, $-\underline{CH}=C-$), 8.015 (d, J (H,H) = 16.5 Hz, 1H, $-\underline{CH}=C-$), 7.729 (d, J (H,H) = 9 Hz, 1H, Ar), 7.532 (d, J (H,H) = 8.5 Hz, 1H, Ar), 7.393 (t, J (H,H) = 8 Hz, 1H, Ar), 7.134 (d, J (H,H) = 8.5 Hz, 1H, Ar), 7.042 (t, J (H,H) = 7 Hz, 1H, Ar), 6.414 (d, J (H,H) = 15.5 Hz, 1H, $-\underline{CH}=C-$), 6.224 (d, J (H,H) = 16.5 Hz, 1H, $-\underline{CH}=C-$), 4.256 (q, J (H,H) = 7 Hz, 2H, \underline{CH}_2-CH_3), 3.796 (s, 3H, \underline{CH}_3), 3.788 (s, 3H, \underline{CH}_3), 1.553 (t, J (H,H) = 7 Hz, 3H, \underline{CH}_3); RMN ¹³C (125 MHz, CDCl₃, 25 °C, TMS) δ (ppm) = 123.428, 167.384, 166.963, 158.365, 147.943, 147.103, 144.360, 142.923, 140.950, 138.753, 129.872, 127.096, 125.203, 124.553, 123.406, 120.420, 119.650, 118.514, 118.493, 115.786, 114.875, 114.517, 65.281, 51.988, 14.823; FT-IR (KBr) v_{max} = 3045 cm⁻¹ (C-H Ar), 2978 cm⁻¹ (C-H Aliphatic), 1718 cm⁻¹ (C=O lactone), 1631 cm⁻¹ ($-O-\underline{C=O}$); UV–Vis (MeOH) $\lambda_{max} = 328.33$ nm. HRMS (ESI m/z) Calcd. for C₂₆H₂₂N₂O₇ [M+H]⁺ 475.1500, found 475.1526.

Figure SI-126. ¹H NMR spectra of 7h on CDCl₃ 500 MHz

Figure SI-127. ¹³C NMR spectra of 7h on CDCl₃ 125 MHz.

Figure SI-131. Emission spectra of 7h in MeOH.

6. Nonlinear optical properties

		Nonlinear refraction index n ₂ (W/cm ²)										
Power (mW)	4a	5а	7a	7b	7c	7d	7e	7f	7g	7h		
1	-7.403e ⁻⁷											
3	-1.22e ⁻⁷											
4	-7.7218e ⁻⁸											
5	-6.332e ⁻⁸			-1.994e ⁻⁹								
7	-1.179e ⁻⁸			-1.616e ⁻⁰⁸								
10				-7.514e ⁻⁰⁹	-2.622e ⁻⁰⁹	-9.499e ⁻¹⁰	-1.324e ⁻⁰⁸			-2.188e ⁻⁰⁹		
15			-2.486e ⁻⁰⁹	-4.133e ⁻⁰⁹	-2.215e ⁻⁰⁹	-4.557 ⁻¹⁰	-3.252e ⁻⁰⁹			-1.198e ⁻⁰⁹		
20			-1.507e ⁻⁰⁹		-1.210e ⁻⁰⁹	-8.254e ⁻¹⁰	-1.656e ⁻⁰⁹			-6.373e ⁻¹⁰		
25		-2.1424e ⁻¹⁰	-1.184e ⁻⁰⁹							-4.795e ⁻¹⁰		
30		-1.1188e ⁻¹⁰	-8.832e ⁻¹⁰	-9.553e ⁻¹⁰	-8.475e ⁻¹⁰				-2.267e ⁻¹⁰	-3.688e ⁻¹⁰		
35		-2.6887e ⁻¹⁰	-7.719e ⁻¹⁰	-5.532e ⁻¹⁰					-1.634e ⁻¹⁰			
40		-1.824e ⁻¹⁰			-5.721e ⁻¹⁰			-1.569e ⁻¹⁰	-1.290e ⁻¹⁰	-3.146e ⁻¹⁰		
45		-1.621e ⁻¹⁰						-1.254e ⁻¹⁰	-1.491e ⁻¹⁰			
50								-1.112e ⁻¹⁰	-1.243e ⁻¹⁰			
55									-9.896e ⁻¹¹			

Table S3. Non-linear refractive index values of coumarin-imidazo[1,2-a]heterocyclic-3-acrylate 7a-h.

7.- Theoretical calculations

Computational Details.

The stationary points of all molecules were obtained by Berny geometry optimization using the Density Functional Theory (DFT). To test the performance of the level of theory against the experimental absorption-emission data, four DFT functionals were used: B3LYP [4,5], CAM-B3LYP [6], PBE [7] (PBEPBE) and M062XR [8] with the basis set 6-311++g(d,p) [9], the Polarizable Continuum Model (PCM) [10,11]. with methanol as solvent was used, all stationary points were confirmed with a frequency analysis. The theoretical characterization of the optical properties were performed using the Time Dependent Density Functional Theory (TD-DFT) [12]. We have performed vertical excitation of all the molecules using TD-DFT at the corresponding theory level of the respective optimization calculation. In addition, the relaxation of the brighter excited states in the gas phase was performed using TD-DFT at corresponding level to that of its fundamental geometry stationary point. Similarly, the theorical calculation of polarizability and hyperpolarizability was made. All calculations were done using the Gaussian09 software [13].

8.- Equilibrium Geometry in Ground State, Equilibrium Geometry in Excited states, Excitation energies and oscillator strength of compound 7a (B3LYP)

7a B3LYP Standard orientation:

Center	Ato	mic Ato	omic	Coordinate	s (Angstroms)
Numl	ber	Number	Туре	Х	Y Z
1	6	0	4.597339	-0.346524	-0.178995
2	6	0	3.583912	0.318825	0.554517
3	6	0	2.268361	-0.084203	0.434986
4	6	0	1.862884	-1.146831	-0.394390
5	6	0	2.877632	-1.806859	-1.123080
6	6	0	4.194480	-1.428834	-1.025876
7	1	0	3.805590	1.130209	1.231006
8	1	0	2.603404	-2.625927	-1.778838
9	1	0	4.927516	-1.955642	-1.618172
10	6	0	0.485667	-1.464123	-0.444542
11	6	0	-0.454689	-0.770254	0.277149
12	6	0	-0.021404	0.291737	1.168878
13	8	0	1.335559	0.589138	1.177980
14	1	0	0.158558	-2.280675	-1.078849
15	6	0	-3.027309	-0.388957	0.112442
16	6	0	-3.497975	-2.586482	0.120210
17	7	0	-2.166051	-2.505354	0.208726
18	6	0	-1.866769	-1.183860	0.224975
19	7	0	-4.077286	-1.315349	0.067458
20	6	0	-4.325147	-3.724454	0.097533

21	6	0	-5.688427	-3.562735	0.040586	
22	1	0	-6.340033	-4.427247	0.022118	
23	6	0	-6.247793	-2.261400	0.019436	
24	1	0	-7.319826	-2.120225	-0.003066	
25	6	0	-5.441514	-1.157981	0.037674	
26	1	0	-5.827184	-0.153799	0.054233	
27	1	0	-3.858535	-4.700019	0.131391	
28	7	0	5.906144	0.029228	-0.085610	
29	6	0	6.985196	-0.716984	-0.746046	
30	1	0	7.879597	-0.594592	-0.131336	
31	1	0	6.753502	-1.782982	-0.727618	
32	6	0	7.274185	-0.248563	-2.175503	
33	1	0	6.406162	-0.384561	-2.824586	
34	1	0	7.549601	0.809045	-2.192309	
35	1	0	8.106368	-0.821646	-2.593407	
36	6	0	6.323831	1.199206	0.696113	
37	1	0	7.224350	1.596096	0.222435	
38	1	0	5.568170	1.981576	0.606294	
39	6	0	6.610079	0.887014	2.168433	
40	1	0	6.939113	1.793533	2.683595	
41	1	0	5.721413	0.508379	2.678208	
42	1	0	7.400998	0.138515	2.262169	
43	8	0	-0.712994	0.946098	1.925777	
44	6	0	-3.097529	1.024236	-0.071681	
45	6	0	-4.130102	1.822256	-0.439024	
46	6	0	-4.001493	3.270839	-0.613564	
47	8	0	-4.919373	3.987816	-0.983967	
48	8	0	-2.773355	3.755437	-0.329057	
49	6	0	-2.585766	5.175471	-0.485894	
50	1	0	-1.552327	5.363071	-0.204557	
51	1	0	-2.756959	5.471473	-1.521500	
52	1	0	-3.263138	5.724856	0.168668	
53	1	0	-5.121531	1.462274	-0.668467	
54	1	0	-2.149062	1.517457	0.096685	
Rotational co	onstants ((GHZ):	0.221864	19 0.0648	3972 0.053885	52
	Excitati	ion ener	gies and osc	allator stren	gths:	
Excited State 1:	Single	t-A 2 110 -	2.9247 eV 4 >111 0	23.92 nm f .69871	=0.6876 <s**2></s**2>	=0.000
This s	tate for o	ptimiza	tion and/or s	second-orde	r correction.	
To	tal Energ	y, E(TE	D-HF/TD-KS	S = -1393.8	35529913	
Copying the exc	cited state	density	y for this sta	te as the 1-p	article RhoCI de	nsity.
Excited State 2:	Single	t-A 3 109 - 110 -	3.1591 eV 3 >111 -0 >112 0	92.46 nm f .27309 .64086	=0.2270 <s**2></s**2>	=0.000
Excited State 3:	Single	t-A 3 109 -	3.4174 eV 3 >111 0	62.81 nm f .60016	=0.3052 <s**2></s**2>	>=0.000

		109 ->112 0.22260
		110 ->112 0.27381
Excited State	4:	Singlet-A 3.6365 eV 340.94 nm f=0.2581 <s**2>=0.000</s**2>
		109 ->111 -0.19047
		109 ->112 0.59655
		110 ->113 0.30221
Excited State	5:	Singlet-A 3.7336 eV 332.08 nm f=0.1596 <s**2>=0.000</s**2>
	•	109 ->111 0.12601
		109 ->112 -0 29031
		$109 \rightarrow 113 - 0.14217$
		110 ->113 0 60006
		110 115 0.0000
Excited State	6.	Singlet-A 4 0594 eV 305 42 nm f=0 0272 <s**2>=0 000</s**2>
Excited State	0.	107 ->111 -0 11886
		$107 \rightarrow 112$ 0 10333
		108 ->111 -0 25097
		$100 \rightarrow 111 = -0.25007$ $108 \rightarrow 112 = 0.10133$
		$100 \Rightarrow 112 = 0.10133$ $100 \Rightarrow 113 = 0.59225$
		$100 \approx 113$ 0.0010
		110
Excited State	7.	Singlet A $4.0893 \text{ eV} = 303.19 \text{ nm} = 6.0118 < S**2 >= 0.000$
Liter State	1.	107 >111 0 27012
		107 -> 111 -0.57915 107 -> 112 -0.12616
		107112 - 0.12010 108111 - 0.42106
		100 - 111 0.45190 100 - 112 0.15045
		106 - 112 = 0.13043 110 > 114 = 0.22212
		110
Excited State	Q .	Singlet A 4 2803 eV 280 05 nm f=0.0787 < S**2>=0.000
Liter State	0.	107 ->111 0 20125
		107 = 111 $0.20125108 > 111$ 0.46235
		100 > 111 0.40233 100 > 113 0.22310
		109 -> 113 0.22319 110 > 114 0.40788
		110 -> 114 -0.40788
Excited State	Q٠	Singlet A 4064 eV 281 37 nm f=0.0643 $<$ S**2>=0.000
Liter State).	107 >111 0 51700
		107 - 111 = 0.51700 100 > 113 = 0.10046
		100 - 110 $0.100 + 0$
		110 -> 114 0.42094
Excited State	10.	Singlet A 4080 eV 275 64 nm f=0.0617 $<$ S**2>=0.000
Excited State	10.	108 ->112 0.65434
		100 > 112 = 0.05454 100 > 113 = 0.15040
		109 -> 115 -0.150+0
Excited State	11.	Singlet-A 4 6091 eV 269 00 nm f=0 0004 <s**2>=0 000</s**2>
Excited State	11.	105 ->111 0 57057
		105->112 _0 37659
		$10J \sim 112$ $-0.3/037$
Excited State	12.	Singlet-A 4 6305 eV 267 76 nm f=0 1150 < S**2>=0 000
Energed State	14.	107->111 -0.12069
		107 ->112 0 65544
		10/ 112 0.03377

	109 ->113 -0.10713
	110 ->114 0.10348
Excited State 13:	Singlet-A 4.7459 eV 261.25 nm f=0.0167 <s**2>=0.000</s**2>
	110 ->115 0.55740
	$110 \rightarrow 116 \qquad 0.34334$
	$110 ->117 \qquad 0.16316$
	$110 \Rightarrow 117$ 0.10510 $110 \Rightarrow 118$ 0.11480
	110 -> 110 0.1140)
Excited State 11.	Singlet A 4.8314 eV 256.62 nm f=0.0367 < S**2>=0.000
Exclude State 14.	107 \112 0 11522
	107 - 113 = 0.11323 108 - 112 = 0.12886
	100 > 115 0.15000
	109 -> 115 0.13/46
	109 ->116 -0.1064/
	110 ->115 -0.34197
	110 ->116 0.50094
	110 ->117 0.18859
Excited State 15:	Singlet-A $4.8430 \text{ eV} 256.01 \text{ nm} = 0.0034 < S^{**2} = 0.000$
	104 ->111 0.53853
	104 ->112 0.32439
	104 ->113 -0.14132
	106 ->111 0.20195
Excited State 16:	Singlet-A 4.9228 eV 251.86 nm f=0.1442 <s**2>=0.000</s**2>
	106 ->111 0.11497
	108 ->113 -0.12714
	110 ->116 -0.22092
	110 ->117 0.60734
Excited State 17:	Singlet-A 4.9826 eV 248.83 nm f=0.0119 <s**2>=0.000</s**2>
	109 ->114 0.15247
	109 ->116 0.11492
	110 ->118 0 62705
	110 -> 120 0 11290
	110 120 0.11290
Excited State 18.	Singlet-A 5 0062 eV 247 66 nm f=0 0010 <s**2>=0 000</s**2>
Enclied State 10.	106 ->111 0 19133
	100 > 111 = 0.19199
	109 - 114 0.03399 110 $> 118 0.12571$
	-0.123/1
Excited State 10.	Singlet_A 5.0462 eV 245.70 nm f=0.0689 <s**2>=0.000</s**2>
LACIEU State 17.	$102 \times 111 = 0.26245$
	105 - 2111 0.20243
	100 - > 111 - 0.3 / 333
	108 -> 113 $0.3 / 938$
	109 ->114 0.21346
	110 ->116 -0.11629
	110 ->117 0.13217
Excited State 20:	Singlet-A 5.1038 eV 242.93 nm f=0.0258 <s**2>=0.000</s**2>
	102 ->111 0.10510

	103 ->111	0.52201		
	105 ->112	-0.10536		
	108 ->113	-0.31813		
	109 ->115	-0.12730		
	109 ->116	0.12885		
	110 ->116	0.12105		
SavETr: write IOETrn= 7	70 NScale= 10) NData= 16 N	LR=1 LETran=	370.

 Center	Ato	mic Ato	omic	Coordinate	s (Angstron	- ns)
Num	ber	Number	Туре	Х	Ϋ́ Ζ	,
						-
1	6	0	4.713993	-0.266004	-0.108189	
2	6	0	3.643156	0.555039	0.345878	
3	6	0	2.351388	0.085758	0.310142	
4	6	0	2.005743	-1.204021	-0.168585	
5	6	0	3.087034	-2.016732	-0.617565	
6	6	0	4.385604	-1.575014	-0.589771	
7	1	0	3.812320	1.545085	0.741805	
8	1	0	2.867446	-3.008204	-0.996329	
9	1	0	5.162049	-2.229278	-0.957170	
10	6	0	0.654532	-1.582992	-0.189927	,
11	6	0	-0.368421	-0.705257	0.250444	
12	6	0	0.025970	0.571237	0.837500	
13	8	0	1.370600	0.920278	0.781920	
14	1	0	0.373117	-2.555581	-0.567012	,
15	6	0	-2.992746	-0.424924	0.171754	
16	6	0	-3.268043	-2.670565	0.093500	I
17	7	0	-1.960009	-2.497881	0.116732	,
18	6	0	-1.730889	-1.145132	0.221194	
19	7	0	-3.954642	-1.444656	0.143841	
20	6	0	-4.015955	-3.872116	0.052720	I
21	6	0	-5.383133	-3.814199	0.101841	
22	1	0	-5.968037	-4.725269	0.072932	,
23	6	0	-6.045115	-2.559595	0.213696	
24	1	0	-7.122252	-2.507123	0.292854	
25	6	0	-5.325437	-1.400235	0.238454	
26	1	0	-5.779907	-0.433122	0.366745	
27	1	0	-3.476858	-4.808276	-0.006437	!
28	7	0	6.002679	0.181332	-0.087665	
29	6	0	7.136585	-0.677869	-0.452473	
30	1	0	7.996061	-0.326455	0.121553	
31	1	0	6.939603	-1.696852	-0.118651	
32	6	0	7.466297	-0.645916	-1.949730	
33	1	0	6.631378	-1.013691	-2.549551	
34	1	0	7.704622	0.368503	-2.277595	
35	1	0	8.335516	-1.279464	-2.143586	

Standard orientation:

36	6	0	6.346821	1.554845	0.301387
37	1	0	7.260130	1.816524	-0.236335
38	1	0	5.572930	2.235022	-0.056039
39	6	0	6.568402	1.721886	1.809766
40	1	0	6.850409	2.756126	2.022559
41	1	0	5.663605	1.488777	2.374563
42	1	0	7.371326	1.070511	2.162289
43	8	0	-0.685733	1.372034	1.409415
44	6	0	-3.245467	0.950118	-0.027541
45	6	0	-4.395621	1.590280	-0.441195
46	6	0	-4.490019	3.022298	-0.631611
47	8	0	-5.485973	3.600179	-1.068191
48	8	0	-3.364322	3.706266	-0.282071
49	6	0	-3.396813	5.131605	-0.458869
50	1	0	-2.424385	5.488517	-0.125978
51	1	0	-3.553093	5.388442	-1.507943
52	1	0	-4.188624	5.578581	0.144406
53	1	0	-5.302010	1.071603	-0.716091
54	1	0	-2.385304	1.579054	0.143149

Rotational constants (GHZ): 0.2250089 0.0635153 0.0517698

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 2.4729 eV 501.37 nm f=1.4063 <S**2>=0.000 110 ->111 0.70410 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1393.86578184 Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 2.9807 eV 415.95 nm f=0.0278 <S**2>=0.000 109 ->111 -0.38970 110 ->112 0.58164 3.1268 eV 396.52 nm f=0.5942 <S**2>=0.000 Excited State 3: Singlet-A 109 ->111 0.57982 0.39249 110 ->112 3.5456 eV 349.68 nm f=0.1535 <S**2>=0.000 Excited State 4: Singlet-A 109 ->112 0.67461 110 ->113 0.18019 Excited State 5: 3.6383 eV 340.77 nm f=0.1601 <S**2>=0.000 Singlet-A 108 ->111 0.15513 109 ->112 -0.18544 109 ->113 -0.10925 110 ->113 0.64474

Excited State 6:	Singlet-A 3.8330 eV 323.46 nm f=0.0202 <s**2>=0.000 107 ->111 -0.28106 108 ->111 0.61067 110 ->113 -0.15208</s**2>
Excited State 7:	Singlet-A 3.9491 eV 313.96 nm f=0.0055 <s**2>=0.000 107 ->111 -0.57770 108 ->111 -0.27240 109 ->113 0.11986 110 ->114 0.23122</s**2>
Excited State 8:	Singlet-A 4.1748 eV 296.99 nm f=0.0946 <s**2>=0.000 107 ->111 0.11625 108 ->111 0.10505 108 ->112 0.19060 109 ->113 0.63896 110 ->113 0.11851</s**2>
Excited State 9:	Singlet-A 4.2408 eV 292.36 nm f=0.0504 <s**2>=0.000 107 ->111 0.24295 110 ->114 0.64251</s**2>
Excited State 10:	Singlet-A 4.3444 eV 285.39 nm f=0.1182 <s**2>=0.000 108 ->112 0.65649 109 ->113 -0.20745</s**2>
Excited State 11:	Singlet-A 4.3951 eV 282.10 nm f=0.0005 <s**2>=0.000 106 ->111 0.60940 106 ->112 -0.31908</s**2>
Excited State 12:	Singlet-A 4.6496 eV 266.66 nm f=0.0601 <s**2>=0.000 104 ->111 -0.33284 105 ->111 0.20514 107 ->112 0.55126</s**2>
Excited State 13:	Singlet-A 4.6538 eV 266.41 nm f=0.0148 <s**2>=0.000 104 ->111 0.52661 104 ->112 0.11578 105 ->111 -0.15754 107 ->112 0.37080</s**2>
Excited State 14:	Singlet-A 4.6843 eV 264.68 nm f=0.0193 <s**2>=0.000 110 ->115 0.59434 110 ->116 0.32475 110 ->120 -0.10968</s**2>

Excited State 15:	Singlet-A 4.7652 eV 260.19 nm f=0.0916 <s**2>=0.000</s**2>
	103 ->111 0.29423
	105 ->111 -0.16267
	110 ->115 0.27893
	110 ->116 -0.49363
	110 ->117 0.13131
Excited State 16:	Singlet-A 4.7850 eV 259.11 nm f=0.0338 <s**2>=0.000</s**2>
	102 ->111 0.20198
	103 ->111 -0.43573
	105 ->111 0.30085
	108 ->113 0.16271
	110 ->115 0.14633
	110 ->116 -0.24506
	110 ->117 0.12624
Excited State 17:	Singlet-A 4.7943 eV 258.61 nm f=0.1174 <s**2>=0.000</s**2>
	105 ->111 -0.10980
	109 ->116 0.11696
	110 ->115 -0.11059
	110 ->116 0.18938
	110 ->117 0.61623
Excited State 18:	Singlet-A 4.8750 eV 254.33 nm f=0.0104 <s**2>=0.000</s**2>
	109 ->115 0.11524
	110 ->117 0.10043
	110 ->118 0.66326
Excited State 19:	Singlet-A 4.8886 eV 253.62 nm f=0.0048 <s**2>=0.000</s**2>
	102 ->111 -0.13481
	103 ->111 0.33989
	104 ->111 0.21791
	105 ->111 0.48057
	108 ->113 0.19753
Excited State 20:	Singlet-A 4.9787 eV 249.03 nm f=0.0445 <s**2>=0.000</s**2>
	108 ->113 0.28155
	109 ->114 0.61597
	110 ->114 -0.10530

9.- Equilibrium Geometry in Ground State, Equilibrium Geometry in Excited states, Excitation energies and oscillator strength of compound 7a' (B3LYP)

7a' B3LYP Standard orientation:

 Center	Ato	mic At	omic	Coordinate	s (Angstroms)
Num	ber	Number	Туре	Х	Ý Z
1	6	0	-4.347400	-0.159664	-0.317349
2	6	0	-3.529237	-0.946293	0.530643
3	6	0	-2.161164	-0.973037	0.340286
4	6	0	-1.513834	-0.239777	-0.671300
5	6	0	-2.333920	0.539650	-1.515930
6	6	0	-3.697819	0.583632	-1.354030
7	1	0	-3.938027	-1.523668	1.346030
8	1	0	-1.871852	1.109836	-2.314460
9	1	0	-4.280309	1.180685	-2.039542
10	6	0	-0.104699	-0.349562	-0.777760
11	6	0	0.632032	-1.132807	0.072036
12	6	0	-0.040832	-1.870347	1.131860
13	8	0	-1.424954	-1.752366	1.193825
14	1	0	0.396908	0.192422	-1.572786
15	6	0	3.019715	-0.193440	-0.065759
16	6	0	4.006622	-2.190575	-0.341782
17	7	0	2.700369	-2.452998	-0.220668
18	6	0	2.094595	-1.256780	-0.052922
19	7	0	4.257874	-0.815648	-0.260347
20	6	0	5.083095	-3.077763	-0.526603
21	6	0	6.360152	-2.577717	-0.606295
22	1	0	7.199881	-3.246461	-0.747586
23	6	0	6.585020	-1.183241	-0.494855
24	1	0	7.586971	-0.778848	-0.542235
25	6	0	5.538313	-0.322035	-0.322264
26	1	0	5.668374	0.740937	-0.219275
27	1	0	4.870347	-4.136437	-0.593693
28	7	0	-5.702516	-0.114019	-0.155769
29	6	0	-6.557784	0.770380	-0.957319
30	1	0	-7.418524	1.029869	-0.337036
31	1	0	-6.033521	1.708166	-1.148014
32	6	0	-7.037090	0.140770	-2.268730
33	1	0	-6.198245	-0.105586	-2.923663
34	1	0	-7.601195	-0.775943	-2.078872

	35	1	0	-7.691772	0.837716	-2.799062	
	36	6	0	-6.393532	-0.946387	0.836337	
	37	1	0	-7.396241	-1.140541	0.449610	
	38	1	0	-5.901950	-1.919086	0.897207	
	39	6	0	-6.490399	-0.299986	2.221862	
	40	1	0	-7.035209	-0.959067	2.903229	
	41	1	0	-5.501533	-0.112809	2.646120	
	42	1	0	-7.024931	0.652079	2.171648	
	43	8	0	0.474071	-2.565748	1.983340	
	44	6	0	2.734549	1.191380	0.126810	
	45	6	0	3.508632	2.292985	-0.026646	
	46	6	0	3.030015	3.653513	0.230913	
	47	8	0	3.710285	4.651667	0.047910	
	48	8	0	1.762135	3.714195	0.691987	
	49	6	0	1.232200	5.028181	0.956508	
	50	1	0	0.221518	4.863695	1.322206	
	51	1	0	1.831697	5.536251	1.712461	
	52	1	0	1.213346	5.623416	0.042951	
	53	1	0	4.527412	2.269209	-0.382975	
	54	1	0	1.711075	1.364359	0.442470	
Rotati	onal co	onstants (Excitati	GHZ):	: 0.21941	30 0.0680)333 0.05 oths:	66899
		Excitati		igies and os		guis.	
Excited Stat	e 1:	Singlet	t-A 110	2.9950 eV ->111	413.97 nm f 0.69613	È=0.2820 <s< td=""><td>**2>=0.000</td></s<>	**2>=0.000
	This st	tate for of	ptimiz	ation and/or	second-orde	r correction.	
	Tot	al Energy	y, E(T)	D-HF/TD-K	S(S) = -1393.8	35193139	
Copying t	he exc	ited state	densi	ty for this st	ate as the 1-p	article RhoC	CI density.
Excited Stat	e 2:	Singlet	t-A	3.1782 eV	390.10 nm f	=0.4993 <s< td=""><td>**2>=0.000</td></s<>	**2>=0.000
			109	->111 -	0.19910		
			110	->112	0.66022		
T 10		a. 1		2 (5 2 (1 1			
Excited Stat	e 3:	Singlet	t-A	3.4726 eV	357.03 nm f	=0.1361 < S	**2>=0.000
			109	->[]]	0.42083		
			109	->112	0.52434		
			110	->112	0.19119		
Estaite 1 Stat	- 1.	Circular		2 (002 -11	242.52	-0 5724 -9	**2>-0.000
Excited Stat	e 4:	Single	100	5.0092 eV	343.32 nm 1 0 50476	=0.3724 <8	2>=0.000
			109	-/111	0.304/0		
			109	-~112 - >112	0.43108		
			110	-/115	0.13110		
Excited Stat	o 5.	Singlet	÷Λ	3 7604 eV	320 71 nm f	-0 0423 <5	**2>-0.000
Exclicu Stat	C J.	Single	100	>111	0 10785	-0.0423 \5	2>-0.000
			109	->113	0.10787		
			110	->113 -	0.12707		
			110	115	0.00700		
Excited Stat	e 6:	Singlet	t-A	4.0234 eV	308.16 nm f	≥0.0057 <s< td=""><td>**2>=0.000</td></s<>	**2>=0.000

		107	->111	-0.19320		
		108	->111	-0.16929		
		109	->113	0.61336		
		110	->113	0.16770		
Excited State	7:	Singlet-A	4.1442 eV	/ 299.18 nm	f=0.0106	<s**2>=0.000</s**2>
		107	->111	0.20256		
		107	->112	0.19286		
		108	->111	-0.37194		
		108	->112	-0.31203		
		110	->114	0.41411		
Excited State	Q .	Singlet A	1 2175 ~	7 285 10 nm	f=0 1022	~\$**2>-0.000
Exclicu State	0.	Singlet-A	×.3473€V	0.10972	1-0.1022	<5 22-0.000
		107	->112 \\111	0.10873		
		108	-/III \\112	0.49380		
		108	-/112	0.11238		
		109	->113	0.14275		
		110	->114	0.43550		
Excited State	9:	Singlet-A	4.4429 eV	/ 279.06 nm	f=0.0574	<s**2>=0.000</s**2>
		107	->111	0.21393		
		108	->111	-0.24655		
		108	->112	0.59170		
Evoited State	10.	Singlet A	1 1717 -	1 277 08 nm	f-0.0484	~5**2>-0.000
Exclicu State	10.	Singlet-A		0.52000	1-0.0464	<5~2>-0.000
		107	->111 \\112	0.33900		
		107	->112 >111	0.16403		
		100	-/III >112	0.10108		
		108	-/112	-0.10555		
		109	->113	0.1/41/		
		110	->114	-0.30443		
		110	->11/	0.10451		
Excited State	11:	Singlet-A	4.5513 eV	V 272.42 nm	f=0.1594	<s**2>=0.000</s**2>
		107	->111	-0.23459		
		107	->112	0.61583		
		109	->113	-0.15995		
		110	->114	-0.11604		
E : 10	10	C' 1 / A	4 (202 3	1 269 25	6 0 0020	< <u>a</u> ** a > 0.000
Excited State	12:	Singlet-A	4.6202 ev	268.35 nm	I=0.0028	<5***2>=0.000
		104	->[]]	0.22478		
		104	->112	-0.11/86		
		105	->111	0.54268		
		105	->112	-0.22100		
		106	->111	0.23685		
Excited State	13:	Singlet-A	4.7560 eV	√ 260.69 nm	f=0.0127	<s**2>=0.000</s**2>
		- 110	->115	0.66669		
		110	->118	-0.18060		
Evoited State	14.	Singlet A	1 8105 -	1 757 72	f-0.0000	~\$**7\-0.000
DACHEU State	17.	Singlet-A	н.0105 еч	<i>431.13</i> IIII	1-0.0009	-5 2/-0.000

	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Excited State 15:	Singlet-A 4.8892 eV 253.59 nm f=0.0916 <s**2>=0.000 107 ->113 0.10515 109 ->116 -0.17417 110 ->116 0.49895 110 ->117 0.38688</s**2>
Excited State 16:	Singlet-A 4.9208 eV 251.96 nm f=0.1131 <s**2>=0.000 106 ->111 -0.11079 107 ->113 -0.15308 108 ->113 -0.15535 109 ->116 0.10652 110 ->116 -0.35744 110 ->117 0.52082</s**2>
Excited State 17:	Singlet-A 5.0094 eV 247.50 nm f= $0.0195 <$ S**2>= 0.000 103 ->111 0.12488 104 ->111 0.15977 104 ->112 -0.13548 106 ->111 -0.26616 109 ->114 0.41973 110 ->118 0.34843 110 ->119 -0.11605
Excited State 18:	Singlet-A 5.0178 eV 247.09 nm f= $0.0043 <$ S**2>= 0.000 103 ->111 -0.10262 104 ->111 -0.13601 104 ->112 0.10841 106 ->111 0.20059 109 ->114 -0.23841 110 ->115 0.12904 110 ->118 0.51445 110 ->119 -0.16507
Excited State 19:	Singlet-A 5.0303 eV 246.47 nm f=0.0294 <s**2>=0.000 103 ->111 -0.17060 104 ->111 -0.24862 104 ->112 0.17739 106 ->111 0.28835 106 ->112 -0.11252 109 ->114 0.49822 Singlet-A 5.0586 eV 245 10 nm f=0.0589 <s**2>=0.000</s**2></s**2>
Excited State 20:	Singlet-A $3.0386 \text{ eV} 243.10 \text{ nm} = 0.0589 < S^{**}2 = 0.000$

	104 ->111 0.11749
	107 ->113 0.24178
	108 ->113 0.46712
	109 ->116 -0.28401
	110 ->116 -0.27497
SavETr: write IO	DETrn= 770 NScale= 10 NData= 16 NLR= 1 LETran= 370 .
*****	***********
Excited State 5:	Singlet-A 3.9152 eV 316.68 nm f=0.1530 <s**2>=0.000</s**2>
	99 ->104 0.10166
	100 ->103 0.15302
	100 ->104 -0.31073
	101 ->104 -0.14061
	102 ->105 0.57426
Excited State 6:	Singlet-A 4 0080 eV 309 34 nm f=0 0497 <s**2>=0 000</s**2>
Excited State 0.	101_>103 0.10320
	101 -> 103 0.10329
	101 > 104 = 0.07847 102 > 105 = 0.10456
	102 -> 105 0.10450
Excited State 7:	Singlet-A 4.1436 eV 299.22 nm f=0.0124 <s**2>=0.000</s**2>
	99 ->103 0.20258
	100 ->104 0.59085
	102 ->105 0.30570
	C 1 (A 42/1 X 270 40 C 0 0005 (C**2) 0 000
Excited State 8:	Singlet-A $4.4361 \text{ eV} 2/9.49 \text{ nm} \text{ f}=0.0085 < \text{S**}2 >= 0.000$
	99 ->103 0.62904
	99 ->104 -0.11501
	100 ->104 -0.12300
	101 ->105 -0.11804
	$101 \rightarrow 106$ 0.12855
	102 ->105 -0.14001
Excited State 9:	Singlet-A 4.5620 eV 271.77 nm f=0.0002 <s**2>=0.000</s**2>
2	98 ->103 0 49825
	98 ->104 0.47510
Excited State 10:	Singlet-A 4.6563 eV 266.27 nm f=0.0521 <s**2>=0.000</s**2>
	99 ->103 0.10040
	101 ->105 0.67740
Excited State 11:	Singlet-A 4.7110 eV 263.18 nm f=0.0035 <s**2>=0.000</s**2>
	95 ->103 0.17882
	96 ->103 0 21550
	97 ->103 0.58154
	97 ->104 -0 16276

Excited State 12:	Singlet-A 4.7660 eV 260.14 nm f=0.1354 <s**2>=0.000</s**2>
	100 ->105 0.64899
	102 ->107 -0.14278
	102 ->108 0.11278
Excited State 13:	Singlet-A 4.8196 eV 257.25 nm f=0.1297 <s**2>=0.000</s**2>
	99 ->104 0.47650
	102 ->106 0.48526
Excited State 14:	Singlet-A 4.9004 eV 253.01 nm f=0.1685 <s**2>=0.000</s**2>
	99 ->103 0.11082
	99 ->104 0.47126
	102 ->106 -0.45767
Excited State 15:	Singlet-A 4.9611 eV 249.91 nm f=0.0112 <s**2>=0.000</s**2>
	95 ->103 -0.13543
	96 ->103 0.58885
	97 ->103 -0.16551
	98 ->103 -0.19250
	98 ->104 0.19847
Excited State 16:	Singlet-A 5.1227 eV 242.03 nm f=0.1911 <s**2>=0.000</s**2>
	99 ->105 -0.19596
	100 ->106 0.16453
	101 ->106 0.43981
	102 ->106 -0.15034
	102 ->107 -0.17720
	102 ->108 0.32570
D 10.10	102 ->109 -0.11755
Excited State 17:	Singlet-A $5.1565 \text{ eV} 240.44 \text{ nm} \text{ f}=0.0059 < \text{S**}2 >= 0.000$
	96 ->103 -0.20335 07 ≥ 102 -0.1204(
	9/->103 0.13046
	98 -> 103 - 0.40341
	98 - 104 0.41002 101 > 106 0.14177
	101 - 2100 0.14177 102 > 107 0.21822
Excited State 18.	Singlet A 5 1661 eV 240 00 nm f=0.0103 $<$ S**2>=0.000
Exclice State 16.	96_>103 0.11561
	98 = >103 0.19612
	98 ->104 -0.19269
	99 -> 105 0 19858
	100 ->105 0 13526
	101 ->106 0.21207
	102 ->107 0.48329
Excited State 10.	Singlet-A 5 2275 eV 237 18 nm f=0 0046 < S**2>=0 000
Exerced State 17.	99->105 -0.11432
	101 ->106 -0.15409
	102 ->108 0.41337

10. Benchmark of both vertical excitation and emission energy

Figure SI-133. Absolute error in nm between the experimental data and theorical data of compounds 7a-h. a) absorption. b) emission.

Figure SI-134. Dihedral angles of compound 7a-h. a) Ground State and b) Excited State.

Theorical lineal and non-lineal properties analysis.

The total static dipole moment μ was determined by the squad of the quadratic sum of the components of the dipole moment. (Ec. 1)

$$\mu = \sqrt{\mu_x^2 + \mu_y^2 + \mu_z^2}$$
(1).

The isotropic polarizability α was be calculated from the trace of the polarization tensor (Ec. 2) $\alpha = (\alpha_{xx} + \alpha_{yy} + \alpha_{zz})$ (2).

The mean/static first hyperpolarizability β_0 is expressed by (Ec. 3 and Ec. 4): $\beta_0 = (\beta_x^2 + \beta_y^2 + \beta_z^2)$ (2)

$$\beta_0 = [(\beta_{xxx} + \beta_{xyy} + \beta_{xzz})^2 + (\beta_{yxx} + \beta_{yyy} + \beta_{yzz})^2 + (\beta_{zxx} + \beta_{zyy} + \beta_{zzz})^2$$
(3). (4)

 $\beta_{x'}\beta_{y'}\beta_z$ are the components of the second order polarizability tensor along the x, y and z axes.

The mean second hyperpolarizability
$$r$$
 is expressed by (Ec. 5):
 1_{r}

$$\gamma = \frac{1}{5} [(\gamma_{xxxx} + \gamma_{yyyy} + \gamma_{zzzz}) + 2(\gamma_{xxyy} + \gamma_{yyzz} + \gamma_{zzxx})]$$
(5)

Where, $\gamma_{xxxx} + \gamma_{yyyy} + \gamma_{zzzz}$ are the second order tensor components.

Figure SI-135. Theoretical calculations of the nonlinear properties of compounds 7a-h. a) static dipole moment, b) isotropic average polarizability, c) first hyperpolarizability, d) second hyperpolarizability.

11. Static dipole moment, isotropic average polarizability, first hyperpolarizability and second hyperpolarizability of compound 7a-h

	Molecule	Method	$\mu^{[a]}$	$\alpha_0^{[b]}$	$\beta_0^{[c]}$	$\gamma_0^{[d]}$
--	----------	--------	-------------	------------------	-----------------	------------------

		a.u.	a.u.	a.u.	a.u.
	B3LYP	4.432623	555.63933	19543.4411	1321884
7a	CAM- B3LYP	3.914257	507.35733	13443.4485	680356
	M062X	5.104336	576.77467	24036.2611	1407060
	PBE	4.700977	616.73933	30914.4481	2710851
	B3LYP	4.354041	577.35967	18479.5701	1347974
7b	CAM- B3LYP	3.862711	527.47567	12915.161	690913
	M062X	5.057873	598.66267	22914.8533	1458239
	PBE	4.602749	642.04333	28973.818	2787777
	B3LYP	4.353766	542.43967	19527.8854	1490650
7c	CAM- B3LYP	3.926845	494.01667	13051.1336	696898
	M062X	5.081003	576.205	26380.3665	1658576
	PBE	4.630039	604.64	31186.907	3157246
	B3LYP	3.565883	573.94967	24516.1865	1703297
7d	CAM- B3LYP	3.004084	520.55433	15506.4538	804267
	M062X	2.875138	520.797	16935.3404	897191
	PBE	3.906009	644.51933	41423.9897	3622888
7e	B3LYP	3.759327	553.42	26601.8673	1737046
	CAM- B3LYP	3.17446	501.02	16338.8322	801496
	M062X	3.079435	501.34867	17861.6618	897517
	PBE	4.156943	620.923	45514.066	3697776
	B3LYP	2.759275	426.01	3559.797	524577
7f	CAM- B3LYP	2.514013	393.61833	3413.61965	303890
	M062X	2.265561	390.99467	3323.69175	323841
	PBE	2.733683	464.72633	4317.22768	939318
	B3LYP	2.918466	465.27867	3283.88806	514166
7g	CAM- B3LYP	2.714823	431.443	3289.8928	302766
	M062X	2.513504	428.53033	3187.23534	318663
	PBE	2.869619	507.986	3077.76374	928800
	B3LYP	1.241644	579.221	6172.80369	786579
7h	CAM- B3LYP	1.136127	526.82333	3654.19197	434853
	M062X	1.011368	520.54533	3329.57635	444456
	PBE	1.516401	607.08767	11720.1685	1359374
Coumarin	B3LYP	4.269110	263.95367	7500.13424	207626
Imidazo	B3LYP	0.923603	240.06700	4884.65540	170203

12. Equilibrium Geometry in Ground State, Excitation energies and oscillator strength of coumarin fragment (B3LYP)

Coumarin B3LYP ABSORPTION

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 3.3739 eV 367.48 nm f=0.5454 <S**2>=0.000 0.69967 58 -> 59 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -709.706366173 Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 4.2085 eV 294.60 nm f=0.0181 <S**2>=0.000 Singlet-A 57 -> 59 0.41631 58 -> 60 0.55516 Excited State 3: Singlet-A 4.4967 eV 275.72 nm f=0.0552 <S**2>=0.000 57 -> 59 0.56148 58 -> 60 -0.41520 Excited State 4: Singlet-A 4.7538 eV 260.81 nm f=0.0133 <S**2>=0.000 58 -> 61 0.69482 Excited State 5: 4.8825 eV 253.93 nm f=0.0005 <S**2>=0.000 Singlet-A 55 -> 59 0.69032 55 -> 62 0.12182 Excited State 6: Singlet-A 4.9091 eV 252.56 nm f=0.1407 <S**2>=0.000 56 -> 59 -0.1829158 -> 62 0.66426 Excited State 7: Singlet-A 5.0593 eV 245.06 nm f=0.0061 <S**2>=0.000 58 -> 63 0.69700 Excited State 8: 5.2139 eV 237.79 nm f=0.0347 <S**2>=0.000 Singlet-A 56 -> 59 -0.38800 58 -> 64 0.57477 Excited State 9: Singlet-A 5.2975 eV 234.04 nm f=0.0372 <S**2>=0.000 56 -> 59 0.37490

			58 -> 64	0.22879		
			58 -> 65	0.52308		
Excited State	10:	Singlet-A	5.3889 eV	230.07 nm	f=0.0963	<s**2>=0.000</s**2>
		C	56 -> 59	-0.36790		
			58 -> 62	-0.15460		
			58 -> 64	-0.29676		
			58 -> 65	0.45725		
			58 -> 67	-0.10574		
Excited State	11:	Singlet-A	5.4754 eV	226.44 nm	f=0.0012	<s**2>=0.000</s**2>
		U	58 -> 66	0.68575		
Excited State	12:	Singlet-A	5.6555 eV	219.23 nm	f=0.0079	<s**2>=0.000</s**2>
		U	57 -> 60	-0.10205		
			58 -> 67	0.67129		
Excited State	13:	Singlet-A	5.8526 eV	211.84 nm	f=0.0037	<s**2>=0.000</s**2>
		U	58 -> 67	-0.11033		
			58 -> 68	0.34019		
			58 -> 69	0.58380		
Excited State	14:	Singlet-A	5.9180 eV	209.50 nm	f=0.0182	<s**2>=0.000</s**2>
		-	56 -> 60	-0.10057		
			57 -> 62	0.17209		
			58 -> 68	0.57137		
			58 -> 69	-0.31883		
Excited State	15:	Singlet-A	5.9854 eV	207.14 nm	f=0.3450	<s**2>=0.000</s**2>
			56 -> 60	0.26332		
			57 -> 60	0.58389		
			57 -> 62	-0.14658		
			58 -> 68	0.16004		
Excited State	16:	Singlet-A	6.0995 eV	203.27 nm	f=0.0146	<s**2>=0.000</s**2>
			57 -> 61	0.62651		
			57 -> 63	0.15764		
			57 -> 66	-0.12056		
			58 -> 70	0.18022		
			58 -> 71	-0.10156		
Excited State	17:	Singlet-A	6.1123 eV	202.84 nm	f=0.5304	<s**2>=0.000</s**2>
			56 -> 60	-0.24477		
			57 -> 60	0.27064		
			57 -> 62	0.54671		
			58 -> 68	-0.13627		

Excited State	18:	Singlet-A	6.1584 eV	201.33 nm	f=0.0028	<s**2>=0.000</s**2>
			57 -> 61	0.14126		
			58 -> 70	-0.12316		
			58 -> 71	0.66363		
Excited State	19:	Singlet-A	6.1835 eV	200.51 nm	f=0.0046	<s**2>=0.000</s**2>
		C C	57 -> 61	-0.13097		
			58 -> 70	0.57038		
			58 -> 71	0.12969		
			58 -> 72	-0.32991		
Excited State	20:	Singlet-A	6.1896 eV	200.31 nm	f=0.0045	<s**2>=0.000</s**2>
		2	58 -> 70	0.30620	1 0100.0	2 2 0.000
			58 -> 72	0.61437		

Ce	enter	Atom	ic Atoı	mic	Coordinates	(Angstroms)
	Numb	er N	lumber	Туре	Х	Y Z
	1	6	0	-1.135459	-0.228016	-0.061026
	2	6	0	-0.040185	0.649861	0.124883
	3	6	0	1.254569	0.168681	0.056631
	4	6	0	1.555276	-1.182723	-0.199396
	5	6	0	0.460237	-2.051662	-0.385482
	6	6	0	-0.838276	-1.602757	-0.319391
	7	1	0	-0.177760	1.705531	0.304413
	8	1	0	0.652317	-3.101601	-0.578298
	9	1	0	-1.638209	-2.315810	-0.451852
	10	6	0	2.925275	-1.565119	-0.251566
	11	6	0	3.917651	-0.652470	-0.062990
	12	6	0	3.613049	0.731886	0.195745
	13	8	0	2.266443	1.077893	0.243544
	14	1	0	3.172393	-2.603763	-0.446637
	15	7	0	-2.426145	0.218586	0.005710
	16	6	0	-3.571352	-0.651367	-0.287618
	17	1	0	-4.361749	-0.014407	-0.691051
	18	1	0	-3.306458	-1.342458	-1.089462
	19	6	0	-4.096116	-1.413374	0.933321
	20	1	0	-3.335905	-2.081341	1.344707
	21	1	0	-4.404193	-0.722253	1.722117
	22	1	0	-4.964549	-2.015787	0.652726
	23	6	0	-2.749528	1.602749	0.368163
	24	1	0	-3.729567	1.587984	0.850063
	25	1	0	-2.047197	1.951109	1.127866

-2.777310 2.563260 -0.825383

-3.048486 3.567879 -0.489450

Standard orientation:

Rotational co	onstants (C	GHZ):	1.1060997	0.29058	0.2396	5559
31	1	0	4.964911	-0.918457	-0.098382	
30	8	0	4.410899	1.634218	0.377850	
29	1	0	-3.514634	2.243299	-1.566077	
28	1	0	-1.803624	2.619386	-1.317159	

13. Equilibrium Geometry in Ground State, Excitation energies and oscillator strength of imidazo fragment (B3LYP)

Imidazo B3LYP ABSOPRTION Standard orientation:

- Ce	nter	Atomic	Ato	mic	Coordinates	(Angstroms)
00	Numb	er Nur	nber	Туре	X	Y Z
-	1	6	0	3.980758	0.176590	0.000032
	2	6	0	4.062846	-1.195364	0.000032
	3	6	0	2.882014	-1.977729	0.000014
	4	6	0	1.652806	-1.380841	-0.000002
	5	6	0	2.716010	0.790382	0.000015
	6	1	0	4.858829	0.808767	0.000046
	7	1	0	5.029256	-1.683542	0.000045
	8	1	0	2.934361	-3.058031	0.000015
	9	1	0	0.732745	-1.938832	-0.000014
	10	7	0	1.565486	-0.010476	-0.000002
	11	7	0	2.397931	2.095358	0.000015
	12	6	0	1.053889	2.133583	-0.000013
	13	1	0	0.509481	3.067786	-0.000021
	14	6	0	0.471534	0.862944	-0.000014
	15	6	0	-0.928200	0.586611	-0.000030
	16	1	0	-1.520847	1.496603	-0.000037
	17	6	0	-1.614474	-0.581104	-0.000039
	18	1	0	-1.147329	-1.554412	-0.000033
	19	6	0	-3.077898	-0.653983	-0.000060
	20	8	0	-3.699273	-1.705800	-0.000016
	21	8	0	-3.689292	0.549934	-0.000004
	22	6	0	-5.130567	0.544647	0.000047

	23	1	0 -5.5105	12 0.044036 0.891178
	24	1	0 -5.4231	17 1.591875 0.000094
	25	1	0 -5.5105	74 0.044099 -0.891093
- Rotatior	nal cor	nstants (GH	Z): 1.5654	195 0.2803146 0.2381013
]	Excitation e	energies and o	scillator strengths:
Excited State	1:	Singlet-A	3.6384 eV	340.76 nm f=0.6873 <s**2>=0.000</s**2>
Т	his sta	te for optin	nization and/o	r second-order correction.
	Tota	l Energy, E	(TD-HF/TD-F	(S) = -685.201122417
Copying the	e excit	ed state der	nsity for this s	tate as the 1-particle RhoCI density.
Excited State	2:	Singlet-A	3.9443 eV	314.34 nm f=0.0267 <s**2>=0.000</s**2>
			52 -> 54	0.27018
			53 -> 55	0.64457
Excited State	3:	Singlet-A	4.6482 eV	266.74 nm f=0.0001 <s**2>=0.000</s**2>
		-	51 -> 54	0.68424
			51 -> 56	-0.10735
Excited State	4:	Singlet-A	4.6790 eV	264.98 nm f=0.3301 <s**2>=0.000</s**2>
			52 -> 54	0.63920
			53 -> 55	-0.25919
Excited State	5:	Singlet-A	5.0662 eV	244.73 nm f=0.1370 <s**2>=0.000</s**2>
			52 -> 55	-0.48198
			53 -> 56	0.49989
Excited State	6:	Singlet-A	5.2135 eV	237.81 nm f=0.0001 <s**2>=0.000</s**2>
		8	50 -> 54	0.68910
Excited State	7:	Singlet-A	5.2274 eV	237.18 nm f=0.0010 <s**2>=0.000</s**2>
		88	53 -> 57	0.68208
Excited State	8.	Singlet-A	5 5356 eV	223 98 nm f=0 2040 <s**2>=0 000</s**2>
	0.	2111810111	49 -> 54	-0.38802
			52 -> 55	0.41116
			53 -> 56	0.40119
Excited State	9:	Singlet-A	5.5672 eV	222.71 nm f=0.0009 <s**2>=0.000</s**2>
		·	53 -> 58	0.67844
			53 -> 59	-0.12009
			53 -> 60	0.10180
Excited State	10:	Singlet-A	5.6753 eV	218.46 nm f=0.0062 <s**2>=0.000</s**2>

			53 -> 58	0.10502		
			53 -> 59	0.68657		
Excited State	11:	Singlet-A	5.7042 eV	217.36 nm	f=0.0004	<s**2>=0.000</s**2>
			50 -> 55	0.60363		
			51 -> 55	-0.35137		
Excited State	12:	Singlet-A	5.8283 eV	212.73 nm	f=0.0100	<s**2>=0.000</s**2>
			48 -> 54	0.5/118		
			49 -> 54	-0.36324		
			52 -> 55	-0.13463		
Excited State	13:	Singlet-A	5.9410 eV	208.69 nm	f=0.0024	<s**2>=0.000</s**2>
			53 -> 5/	0.12091		
			53 -> 60	0.67668		
Excited State	14:	Singlet-A	6.0028 eV	206.54 nm	f=0.0000	<s**2>=0.000</s**2>
			50 -> 55	0.55125		
			51 -> 55	0.004/3		
Excited State	15:	Singlet-A	6.1239 eV	202.46 nm	f=0.1697	<s**2>=0.000</s**2>
			48 -> 54	0.30924		
			49 -> 54	0.404/4		
			52 -> 55	0.21415		
			$52 \Rightarrow 50$ $53 \Rightarrow 56$	0.10308		
			53 -> 63	-0.10855		
			53 -> 65	0 17915		
			55 - 65	0.17910		
Excited State	16:	Singlet-A	6.1652 eV	201.10 nm	f=0.0010	<s**2>=0.000</s**2>
			53 -> 61	0.67692		
			53 -> 64	0.15342		
Excited State	17:	Singlet-A	6.2067 eV	199.76 nm	f=0.0047	<s**2>=0.000</s**2>
			48 -> 55	0.11054		
			49 -> 55	0.52314		
			52 -> 56	0.43980		
Excited State	18:	Singlet-A	6.3439 eV	195.44 nm	f=0.0060	<s**2>=0.000</s**2>
			52 -> 57	0.60775		
			52 -> 58	0.20696		
			35 -> 62	-0.23394		
Excited State	19:	Singlet-A	6.3882 eV	194.08 nm	f=0.0001	<s**2>=0.000</s**2>
			52 -> 57	0.15897		
			53 -> 62	0.53833		
			53 -> 64	-0.40002		

14. Equilibrium Geometry in Ground State and Dihedral angles of compound 4a

Standard	orientation:

Center	Ato	mic Ate	omic	Coordinate	s (Ang	stroms)
Num	ber	Number	Туре	Х	Ŷ	Z
1	6	0	3.740944	-0.315076	0.045	5668
2	6	0	2.851468	0.766559	-0.099	9312
3	6	0	1.491022	0.543357	-0.076	5026
4	6	0	0.926653	-0.722617	0.091	625
5	6	0	1.819570	-1.798305	0.237	187
6	6	0	3.176096	-1.612291	0.214	872
7	1	0	3.196482	1.782854	-0.210)486
8	1	0	1.418796	-2.797682	0.362	2100
9	1	0	3.818071	-2.474413	0.311	164
10	6	0	-0.487771	-0.829106	0.10	3495
11	6	0	-1.295159	0.255570	-0.03	8531
12	6	0	-0.691950	1.566656	-0.20	7903
13	8	0	0.679408	1.632157	-0.21	6894
14	1	0	-0.944557	-1.803531	0.23	0652
15	6	0	-3.708580	1.111227	-0.14	0156

16	1	0	-3.631890	2.174385	-0.267940	
17	6	0	-4.642046	-0.890921	0.102121	
18	7	0	-3.337984	-1.103576	0.126392	
19	6	0	-2.753926	0.127695	-0.022724	
20	7	0	-4.918979	0.461073	-0.060355	
21	6	0	-5.729119	-1.790122	0.211223	
22	6	0	-7.000577	-1.305611	0.154069	
23	1	0	-7.842775	-1.980674	0.235992	
24	6	0	-7.238972	0.087606	-0.013386	
25	1	0	-8.248448	0.471442	-0.058542	
26	6	0	-6.198925	0.949304	-0.118028	
27	1	0	-6.301855	2.017289	-0.246290	
28	1	0	-5.517767	-2.843316	0.337636	
29	7	0	5.090699	-0.131927	0.022857	
30	6	0	6.027454	-1.218959	0.292482	
31	1	0	6.920834	-0.770655	0.730736	
32	1	0	5.615636	-1.873142	1.061717	
33	6	0	6.409705	-2.017304	-0.949455	
34	1	0	5.538406	-2.498039	-1.397616	
35	1	0	6.863701	-1.369485	-1.702314	
36	1	0	7.132748	-2.793774	-0.690256	
37	6	0	5.684755	1.170471	-0.260766	
38	1	0	6.654692	0.987500	-0.726526	
39	1	0	5.085348	1.685924	-1.012471	
40	6	0	5.864264	2.041835	0.978301	
41	1	0	6.330274	2.991476	0.706595	
42	1	0	4.907176	2.256299	1.456794	
43	1	0	6.505837	1.547143	1.710565	
44	8	0	-1.280195	2.616793	-0.343393	
Rotational constants (GHZ):			0.772587	79 0.0793		728829

Mulliken and Hirshfeld charges for the coumarin and imidazo[1,2-a]pyridine moieties

Coumarin moiety

		Charge*		
Number	Atom	Mulliken	Hirshfeld	
1	С	-0.014534	0.066341	
2	С	-0.347231	-0.033362	
3	С	-1.495054	0.079459	
4	С	1.512279	-0.042438	
5	С	0.203971	0.024677	
6	С	0.006306	-0.018571	
10	С	-0.005721	0.063879	
11	С	0.156157	-0.020614	
12	С	0.16769	0.184711	
13	0	-0.160629	-0.12186	
15	Ν	0.238834	-0.070163	
16	С	0.070358	0.107409	
19	С	-0.007207	0.022907	
23	С	0.087413	0.107233	
26	С	-0.011412	0.023069	
30	0	-0.401219	-0.372356	

*Hydrogens charges summed into heavy atoms

		7a		7a'	
		Charge*		Chai	ʻge*
		Mulliken Hirshfeld Mulliken		Hirshfeld	
1	С	-0.174924	0.069881	0.014796	0.069088
2	С	-0.487775	-0.029374	-0.392624	-0.03
3	С	-1.043379	0.08248	-1.000349	0.08181
4	С	0.908072	-0.040431	0.725183	-0.040741
5	С	-0.088182	0.030438	0.037988	0.029593
6	С	0.167453	-0.013922	0.117326	-0.015042
10	C	0.414935	0.057506	0.206209	0.062593

11	С	0.63653	-0.038746	0.212857	-0.035184
12	С	-0.201706	0.193732	0.18416	0.190963
13	0	-0.122641	-0.11682	-0.147803	-0.118446
15	С	0.047747	0.014117	0.189537	0.016497
16	С	0.379125	0.100394	0.544243	0.100456
17	N	-0.037396	-0.252668	-0.048593	-0.256217
18	С	-0.12706	0.044478	-0.125209	0.0442
19	N	0.237738	-0.002802	0.24777	-0.002864
20	С	0.101523	0.026456	-0.02953	0.027236
21	С	-0.394565	0.037992	-0.345713	0.039083
23	С	0.062369	0.023529	0.001833	0.024274
25	С	0.004743	0.107857	0.016487	0.108161
28	N	0.248835	-0.066262	0.247505	-0.067192
29	С	0.081937	0.110137	0.085623	0.109515
32	С	-0.000301	0.02543	-0.002232	0.024834
36	С	0.080079	0.10996	0.084605	0.109419
39	С	-0.004009	0.025776	-0.003341	0.025022
43	0	-0.375488	-0.339651	-0.36087	-0.35796
44	С	0.070057	0.012359	-0.27982	0.023446
45	С	-0.107701	-0.038254	0.103909	-0.033608
46	С	-0.046217	0.199018	-0.055513	0.199992
47	0	-0.358131	-0.347282	-0.352068	-0.345343
48	0	-0.136235	-0.133012	-0.140274	-0.13273
49	С	0.264567	0.147413	0.263904	0.149186

*Hydrogens charges summed into heavy atoms

Et₂N

Mulliken: 0.238834 Hirshfeld: -0.070163

⊕ Et₂N

Mulliken: O -0.349022 Hirshfeld: O -0.339052

Mulliken: N 0.247505 Hirshfeld: N -0.067192 Mulliken: O -0.358131 Hirshfeld: O -0.347282

C

MeO

Et₂N

Mulliken: N 0.248835 Hirshfeld N -0.066262 Mulliken: O -0.352068 Hirshfeld: O -0.345343

Scheme S1. Resonances structures of the ICT, The N charges refers to Nitrogen in diethylamino in coumarin and the O chargers refers to carbonylic oxygen in acrylate.

- [1] S. García, J.L. Vázquez, M. Rentería, I.G. Aguilar-Gardu, F. Delgado, M. Trejo-Durán, M.A. García-Revilla, E. Alvarado-M, M.Á. Vázquez, Synthesis and experimentalcomputational characterization of nonlinear optical properties of triazacyclopentafluorenecoumarin derivatives, Opt. Mater. (Amst). 62 (2016) 231–239. https://doi.org/10.1016/j.optmat.2016.09.065.
- [2] B. Aydıner, Z. Seferoğlu, Proton Sensitive Functional Organic Fluorescent Dyes Based on Coumarin-imidazo [1,2-a] pyrimidine; Syntheses, Photophysical Properties, and Investigation of Protonation Ability, Eur. J. Org. Chem. 2018 (2018) 5921–5934. https://doi.org/10.1002/ejoc.201800594.
- [3] O. Meth-Cohn, S.P. Stanforth, The Vilsmeier-Haack Reaction, in: B.M. Trost, I. Fleming (Eds.), Compr. Org. Synth., Elsevier Ltd., Berkeley, 1991: pp. 777–794.
- [4] C. Lee, W. Yang, R.G. Parr, Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density, EE Eval. Eng. 50 (2011) 36–39. https://doi.org/10.1103/PhysRevB.37.785.
- [5] A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648–5652. https://doi.org/10.1063/1.464913.
- [6] T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett. 393 (2004) 51–57. https://doi.org/10.1016/j.cplett.2004.06.011.
- [7] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.
- [8] M. Walker, A.J.A. Harvey, A. Sen, C.E.H. Dessent, Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions, J. Phys. Chem. A. 117 (2013) 12590–12600. https://doi.org/10.1021/jp408166m.
- [9] T. Clark, J. Chandrasekhar, G.W. Spitznagel, P.V.R. Schleyer, Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F, J. Comput. Chem. 4 (1983) 294–301. https://doi.org/10.1002/jcc.540040303.
- [10] J. Tomasi, B. Mennucci, R. Cammi, Quantum mechanical continuum solvation models, Chem. Rev. 105 (2005) 2999–3093. https://doi.org/10.1021/cr9904009.
- [11] R. Cammi, B. Mennucci, J. Tomasi, Fast evaluation of geometries and properties of excited molecules in solution: A Tamm-Dancoff model with application to 4dimethylaminobenzonitrile, J. Phys. Chem. A. 104 (2000) 5631–5637. https://doi.org/10.1021/jp0001561.
- [12] C. Adamo, D. Jacquemin, The calculations of excited-state properties with time-dependent density functional theory, Chem. Soc. Rev. 42 (2013) 845–856. https://doi.org/10.1039/c2cs35394f.
- [13] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J. V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings,

B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 09, Revis. B.01, (2009).