Electronic Supplementary Information for ...

#### Structural Determination of Arginine-Linked Cisplatin Complexes via IRMPD Action Spectroscopy: Arginine Binds to Platinum via NO<sup>-</sup>-Binding Mode

C. C. He,<sup>a</sup> L. A. Hamlow,<sup>a</sup> B. Kimutai,<sup>a</sup> H. A. Roy,<sup>a</sup> Zachary J. Devereaux,<sup>a</sup> N. A. Cunningham,<sup>a</sup> J. K. Martens,<sup>b</sup> G. Berden,<sup>b</sup> J. Oomens,<sup>bc</sup> C. S. Chow, and M. T. Rodgers<sup>a,\*</sup>

<sup>a</sup>Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States <sup>b</sup>Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands <sup>c</sup>van't Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands

#### **Figure Captions**

**Figure S1.** IRMPD spectra of the  $[(Arg-H)PtCl_2]^-$  and  $[(Arg)PtCl_2+Na]^+$  complexes in the fingerprint region measured under variable attenuation of the FEL.

Figure S2. Binding modes of Arg to the Pt center of the [(Arg-H)PtCl<sub>2</sub>]<sup>-</sup> complex and the designated nomenclature.

Figure S3. Binding modes of Arg to the Pt center with possible sodium binding modes of the  $[(Arg)PtCl_2+Na]^+$  complex and the designated nomenclature.

**Figure S4.** Stable low-energy conformers of the [(Arg–H)PtCl<sub>2</sub>]<sup>-</sup> complex and their relative Gibbs energies at 298 K calculated at B3LYP/mDZP/def2-TZVP level of theory. Structures are classified by the Arg binding mode to Pt.

**Figure S5.** Stable low-energy conformers of the  $[(Arg)PtCl_2+Na]^+$  complex and their relative Gibbs energies at 298 K calculated at B3LYP/mDZP/def2-TZVP level of theory. Structures are classified by the Arg binding mode to Pt.

**Figure S6.** Comparison of the experimental IRMPD spectrum of  $[(Arg-H)PtCl_2]^-$  with theoretical IR spectra predicted for select NN<sub>s</sub> binding conformers along with their optimized structures and relative Gibbs energies computed at B3LYP/mDZP/def2-TZVP level of theory at 298 K. Misaligned IR features are highlighted in red.

**Figure S7.** Comparison of the experimental IRMPD spectrum of  $[(Arg-H)PtCl_2]^-$  with theoretical IR spectra predicted for select NO<sup>-</sup> binding conformers along with their optimized structures and relative Gibbs energies computed at B3LYP/mDZP/def2-TZVP level of theory at 298 K. Misaligned IR features are highlighted in red.

**Figure S8.** Comparison of the experimental IRMPD spectrum of  $[(Arg-H)PtCl_2]^-$  with theoretical IR spectra predicted for select N<sub>s</sub>O<sup>-</sup> binding conformers along with their optimized structures and relative Gibbs energies computed at B3LYP/mDZP/def2-TZVP level of theory at 298 K. Misaligned IR features are highlighted in red.

**Figure S9.** Comparison of the experimental IRMPD spectrum of  $[(Arg-H)PtCl_2]^-$  with theoretical IR spectra predicted for select OO<sup>-</sup> binding conformers along with their optimized structures and relative Gibbs energies computed at B3LYP/mDZP/def2-TZVP level of theory at 298 K. Misaligned IR features are highlighted in red.

**Figure S10.** Comparison of the experimental IRMPD spectrum of  $[(Arg-H)PtCl_2]^-$  with theoretical IR spectra predicted for select conformers with other side chain binding modes along with their optimized structures and relative Gibbs energies computed at B3LYP/mDZP/def2-TZVP level of theory at 298 K. Misaligned IR features are highlighted in red.

**Figure S11.** Comparison of the experimental IRMPD spectrum of  $[(Arg)PtCl_2+Na]^+$  with theoretical IR spectra predicted for select NN<sub>s</sub> binding conformers along with their optimized structures and relative Gibbs energies computed at B3LYP/mDZP/def2-TZVP level of theory at 298 K. Misaligned IR features are highlighted in red.

**Figure S12.** Comparison of the experimental IRMPD spectrum of  $[(Arg)PtCl_2+Na]^+$  with theoretical IR spectra predicted for the NO<sup>-</sup> binding conformers along with their optimized structures and relative Gibbs energies computed at B3LYP/mDZP/def2-TZVP level of theory at 298 K. Misaligned IR features are highlighted in red.

**Figure S13.** Comparison of the experimental IRMPD spectrum of  $[(Arg)PtCl_2+Na]^+$  with theoretical IR spectra predicted for select N<sub>s</sub>O binding conformers along with their optimized structures and relative Gibbs energies computed at B3LYP/mDZP/def2-TZVP level of theory at 298 K. Misaligned IR features are highlighted in red.

**Figure S14.** Comparison of the experimental IRMPD spectrum of  $[(Arg)PtCl_2+Na]^+$  with theoretical IR spectra predicted for select OO<sup>-</sup> binding conformers along with their optimized structures and relative Gibbs energies computed at B3LYP/mDZP/def2-TZVP level of theory at 298 K. Misaligned IR features are highlighted in red.

**Figure S15.** Comparison of the experimental IRMPD spectrum of  $[(Arg)PtCl_2+Na]^+$  with theoretical IR spectra predicted for select conformers with other side chain binding modes along with their optimized structures and relative Gibbs energies computed at B3LYP/mDZP/def2-TZVP level of theory at 298 K. Misaligned IR features are highlighted in red.

### Figure S1.



### [(Arg-H)PtCl<sub>2</sub>]<sup>-</sup>



 $NN_s$ 



NO







 $NN_{\omega}$ 



 $\mathsf{NN}_{\epsilon}$ 





N<sub>ω</sub>O⁻



N<sub>ε</sub>O⁻

### [(Arg)PtCl<sub>2</sub>+Na]<sup>+</sup>





NO









NO<sup>-</sup>\_OCl<sub>b</sub>





 $NN_sOCI_bCI_s$ 

 $NN_sOCI_s$ 







H<sub>3</sub>



 $\mathsf{NN}_{\epsilon}$ 



 $NO_N_sCI_bCI_O$ 





 $N_{\epsilon}O$ 



ЪН  $H_2N$ 

Ν<sub>ω</sub>Ο



NH<sub>2</sub>



NN<sub>s</sub>\_A 0.0 kJ/mol



 $NN_{s}E$ 14.9 kJ/mol



NN<sub>s</sub>\_I 31.2 kJ/mol



NN<sub>s</sub>\_M 38.3 kJ/mol



NN<sub>s</sub>\_Q 60.6 kJ/mol



NN<sub>s</sub>B 7.4 kJ/mol



 $NN_{s}F$ 18.7 kJ/mol



NN<sub>s</sub>\_J 31.5 kJ/mol



NN<sub>s</sub>\_N



NN<sub>s</sub>\_R 66.1 kJ/mol



NN<sub>s</sub>\_C 12.6 kJ/mol



 $NN_{s}G$ 19.4 kJ/mol



 $NN_{s}K$ 33.2 kJ/mol



NN<sub>s</sub>\_O 41.5 kJ/mol







NN<sub>s</sub>\_P 43.0 kJ/mol

[(Arg-H)PtCl<sub>2</sub>]<sup>-</sup>, NN<sub>s</sub>



[(Arg-H)PtCl<sub>2</sub>]<sup>-</sup>, NO<sup>-</sup>



[(Arg-H)PtCl<sub>2</sub>]<sup>-</sup>, NO<sup>-</sup>

NO-\_AR

24.2 kJ/mol

**NO-\_AV** 25.1 kJ/mol



**NO<sup>-</sup>\_AO** 22.7 kJ/mol



**NO-\_AS** 24.3 kJ/mol



**NO<sup>-</sup>\_AW** 25.3 kJ/mol



**NO-\_BA** 26.0 kJ/mol



NO<sup>-</sup>\_BE 26.3 kJ/mol



NO<sup>-\_</sup>AP 23.3 kJ/mol



**NO<sup>-</sup>\_AT** 24.7 kJ/mol



**NO<sup>-</sup>\_AX** 25.7 kJ/mol



**NO<sup>-</sup>\_BB** 26.1 kJ/mol



NO<sup>-</sup>\_BF 26.7 kJ/mol



23.9 kJ/mol



NO<sup>-</sup>\_AU 24.9 kJ/mol



**NO<sup>-</sup>\_AY** 25.9 kJ/mol



• NO<sup>-</sup>\_BC 26.1 kJ/mol





NO<sup>-</sup>\_BD 26.2 kJ/mol



[(Arg-H)PtCl<sub>2</sub>]<sup>-</sup>, NO<sup>-</sup>



[(Arg-H)PtCl<sub>2</sub>]<sup>-</sup>, NO<sup>-</sup>



A CAR

**NO<sup>-</sup>\_CC** 36.4 kJ/mol







**NO<sup>-</sup>\_CI** 40.0 kJ/mol

**NO<sup>-</sup>\_CJ** 40.1 kJ/mol

NO-\_CF

37.1 kJ/mol



NO-\_CG

37.7 kJ/mol

**NO<sup>-</sup>\_CK** 41.3 kJ/mol



NO-\_CH

38.5 kJ/mol

**NO<sup>-</sup>\_CL** 44.7 kJ/mol



**NO<sup>-</sup>\_CM** 44.9 kJ/mol



**NO<sup>-</sup>\_CN** 48.1 kJ/mol



S12





 $[(Arg-H)PtCl_2]^-$ , other side chain binding modes



[(Arg)PtCl<sub>2</sub>+Na]<sup>+</sup>, NN<sub>s</sub>



NN<sub>s</sub>\_U 20.3 kJ/mol



NN<sub>s</sub>\_Y 22.6 kJ/mol

NN<sub>s</sub>\_AC 25.5 kJ/mol



NN<sub>s</sub>\_AG 27.1 kJ/mol



NN<sub>s</sub>\_AK 34.8 kJ/mol

NN<sub>s</sub>\_V 20.9 kJ/mol

**NN<sub>s</sub>\_Z** 22.9 kJ/mol

NN<sub>s</sub>\_AD 25.6 kJ/mol



NN<sub>s</sub>\_AH 29.3 kJ/mol



NN<sub>s</sub>\_AL

37.1 kJ/mol

NN<sub>s</sub>\_W 21.7 kJ/mol



NN<sub>s</sub>\_AA 23.5 kJ/mol



NN<sub>s</sub>\_AE 26.6 kJ/mol



NN<sub>s</sub>\_AI 34.1 kJ/mol



NN<sub>s</sub>\_AM 43.0 kJ/mol



NN<sub>s</sub>\_AJ 34.2 kJ/mol



NN<sub>s</sub>\_AN 46.5 kJ/mol









[(Arg)PtCl<sub>2</sub>+Na]<sup>+</sup>, NN<sub>s</sub>

#### Figure S5. **NO⁻\_B** 2.8 kJ/mol **NO⁻\_C** 7.7 kJ/mol **NO-\_D** 7.8 kJ/mol **NO⁻\_A** 1.8 kJ/mol **NO<sup>-</sup>\_F** 11.1 kJ/mol **NO-\_H** 12.1 kJ/mol NO-\_E NO- G 9.7 kJ/mol 11.6 kJ/mol **NO<sup>-</sup>\_I** 12.2 kJ/mol **NO⁻\_L** 17.0 kJ/mol **NO<sup>-</sup>\_K** 15.2 kJ/mol NO-\_J 14.0 kJ/mol **NO<sup>-</sup>\_N** 17.6 kJ/mol **NO-\_O** 18.4 kJ/mol **NO⁻\_M** 17.5 kJ/mol NO-\_P 18.6 kJ/mol NO-\_Q NO-\_R NO-\_S NO-\_T 19.2 kJ/mol 20.0 kJ/mol 21.9 kJ/mol 24.2 kJ/mol

[(Arg)PtCl<sub>2</sub>+Na]<sup>+</sup>, NO<sup>-</sup>

S18



[(Arg)PtCl<sub>2</sub>+Na]<sup>+</sup>, NO<sup>-</sup>



S20



[(Arg)PtCl<sub>2</sub>+Na]<sup>+</sup>, OO<sup>-</sup>



NO<sup>-</sup>\_OCI<sub>b</sub>\_A 21.4 kJ/mol



NN<sub>s</sub>\_OCI<sub>s</sub>\_A 69.2 kJ/mol



N<sub>s</sub>O<sup>-</sup>\_OCI<sub>s</sub>\_A 97.7 kJ/mol



NN<sub>s</sub>\_OCI<sub>b</sub>CI<sub>s</sub>\_A 36.7 kJ/mol



NN<sub>ω</sub>\_Α 80.1 kJ/mol



N<sub>s</sub>O⁻\_A 65.8 kJ/mol



NN<sub>€</sub>\_A 67.7 kJ/mol



**NO\_A** 84.1 kJ/mol



NO\_N<sub>s</sub>Cl<sub>b</sub>Cl<sub>o</sub>\_A 86.5 kJ/mol



121.2 kJ/mol



**N<sub>e</sub>O\_A** 145.9 kJ/mol

## Figure S6.



## Figure S7.



## Figure S7.



## Figure S8.



[(Arg-H)PtCl<sub>2</sub>]<sup>-</sup>, N<sub>s</sub>O<sup>-</sup>

## Figure S9.



[(Arg-H)PtCl<sub>2</sub>]<sup>-</sup>, OO<sup>-</sup>

# Figure S10.



[(Arg–H)PtCl<sub>2</sub>]<sup>-</sup>, Other side chain binding modes

# Figure S11.



## Figure S12.



[(Arg)PtCl<sub>2</sub>+Na]<sup>+</sup>, NO<sup>-</sup>

## Figure S13.



[(Arg)PtCl<sub>2</sub>+Na]<sup>+</sup>, N<sub>s</sub>O



[(Arg)PtCl<sub>2</sub>+Na]<sup>+</sup>, OO<sup>-</sup>



[(Arg)PtCl<sub>2</sub>+Na]<sup>+</sup>, Other side chain binding modes



[(Arg)PtCl<sub>2</sub>+Na]<sup>+</sup>, Other side chain binding modes