Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Supplementary Data

First-principles study of two-dimensional NbSe₂H/g-ZnO van der Waals heterostructures as a water splitting photocatalyst

K. H. Yeoh^{1, 2}, K. -H. Chew³, T. L. Yoon⁴, Y.H.R. Chang⁵ and D. S. Ong⁶

¹Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia.

²Center for Photonics and Advanced Material Research , Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia

³Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.

⁴School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

⁵Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Sarawak, 94300 Samarahan, Sarawak

⁶Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia.

^{a)} Author to whom correspondence should be addressed. Electronic mail: <u>khyeoh@utar.edu.my</u>,

keathoe.yeoh@gmail.com

Fig. S1: Top and side views of the crystal structure for (a) g-ZnO and (c) 2D NbSe₂H. The band structures for (b) g-ZnO and (d) 2D NbSe₂H were calculated by using HSE06 functional. The lattice constant for the g-ZnO and 2D NbSe₂H are denoted by a_1 and a_2 , respectively.

Fig. S2: Adsorption of O, OH and OOH intermediates on the NbSe₂H/g-ZnO vdW heterostructures for (a) C3 and (b) C6 stackings. Yellow, grey, cyan, purple, and red balls denote Se, Nb, H, Zn and O atoms, respectively.

Fig. S3: Adsorption of H on the surface of 2D NbSe₂H in the NbSe₂H/g-ZnO vdW heterostructures. The coverage of the H atoms are $\theta = 1/4$ for (a) C3 and (d) C6 stackings, $\theta = 1/16$ for (b) C3 and (e) C6 stackings and $\theta = 1/36$ for (c) C3 and (f) C6 stackings Yellow, grey, cyan, purple, and red balls denote Se, Nb, H, Zn and O atoms, respectively.