Supporting Information

Construction of Frustrated Lewis Pairs on Carbon Nitride Nanosheet for

Catalytic Hydrogenation of Acetylene

Qiang Wan^a, Juan Li^a, Rong Jiang^{b,*}, and Sen Lin^{a,c,*}

^a State Key Laboratory of Photocatalysis on Energy and Environment, College of

Chemistry, Fuzhou University, Fuzhou 350002, China

^bInstitute of Advanced Energy Materials, Fuzhou University, Fuzhou 350002, China

^c Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry,

Xiamen, Fujian 361005, China

^{*}Corresponding author. Email: slin@fzu.edu.cn (S.L)

Figure S1. Optimized structures with charge density colored by local potential (eV) of (a) g-C₃N₄ and (b) C₂N. Color code: C, brown; N, light blue. Isosurface level of charge density: 0.1 e bohr⁻³.

Figure S2. Comparison of H_2 dissociation on Al and B doped *g*-C₃N₄, with energy barrier/reaction energy.

Figure S3. The initial, transition and final states of Al migration in the pore of the g- C_3N_4 , related energies are also attached.

Figure S4. The initial, transition and final states of Al migration in the pore of the C_2N , related energies are also attached.

Figure S5. Bond length variation of Al–C/N bond in Al-doped g-C₃N₄ (left) and C₂N (right) AIMD simulations under 500 K for 5ps.

Figure S6. Electrostatic potential colored electron density Al doped g-C₃N₄ and C₂N.

Figure S7. Electron localization function maps of Al-doped (a) g-C₃N₄ and (b) C₂N

Figure S8. Comparison between the homolytic H_2 dissociation on Al site (blue) and heterolytic H_2 dissociation on CLP (red).

Figure S9. Initial (IS), transition (TS) and final states (TS) of H_2 dissociation catalyzed by FLPs in Al-doped *g*-C₃N₄.

Figure S10. IS, TS and FS of H_2 dissociation catalyzed by FLPs in Al-doped C_2N .

Figure S11. Reaction coordinate (split at metastable state) of H_2 activation catalyzed by Al-doped *g*-C₃N₄-3, owing to the existence of a metastable state in the process.

Different from the other two FLPs, the pathway of H₂ dissociation on g-C₃N₄-3 involved a metastable state (MS, $d_{\text{H-H}}$ =0.85 Å, without image frequency), which can be considered as an intermediate. To verify this path, we split the process into two steps, IS to MS and MS to FS, which can represent the orientation transformation of H₂ and H₂ cleavage, respectively. Results show that the former one is pure energetic climbing while the latter is downhill, both two steps would not experience a transition state. These suggest that starting from the same initial state with the other two FLPs, the H₂ dissociation on g-C₃N₄-3 should overcome an energy of 0.39 eV.

Figure S12. IS, TS and FS of acetylene hydrogenation catalyzed by FLPs in Al-doped g-C₃N₄.

Figure S13. IS, TS and FS of acetylene hydrogenation catalyzed by FLPs in Al-doped C_2N .

Figure S14. Correlation between the ICOHP of Al-H bond with the energy barrier of the first hydrogenation.

		Al		_	В		
		$d_{ ext{N-LA}}\left(ext{\AA} ight)$	E _{ads} (eV)		$d_{\text{N-LA}}$ (Å)	$E_{ m ads}({ m \AA})$	
$g-C_3N_4$	adsorption	2.39-2.78	-2.86		2.67-3.52	-4.74	
	substitution	3.29-4.16	-4.72		2.67-4.78	-10.92	
C ₂ N	adsorption	2.87-3.61	-4.36		3.10-4.21	-5.17	
	substitution	2.59-4.88	-4.18		2.87-5.60	-7.73	

Table S1. Distance $(d_{\text{N-LA}})$ of N-Al and adsorption energy (E_{ads}) of LA for varying carbon nitride supporting LA. The cohesive energy of Al¹ and B² is 3.67 and 5.91 eV, respectively.

FLP sites	$d_{ m Al-N}$ /Å -	<i>Q</i> /e (<i>d/</i> Å	
		H(Al)	H(N)	"H-H
$g-C_{3}N_{4}-1$	3.29	-0.47	0.36	0.91
<i>g</i> -C ₃ N ₄ -2	4.16	-0.47	0.35	0.90
$g-C_{3}N_{4}-3$	3.68	-0.37	0.30	0.85
C ₂ N-1	2.59	-0.19	0.14	0.82
C ₂ N-2	4.26	-0.48	0.36	0.99
C ₂ N-3	4.28	-0.48	0.36	1.10

Table S2. Calculated distance between A1 and N sites (d_{Al-N}) , atomic charge (Q) of hydrogen in transition state (TS), and H-H bond lengths (d_{H-H}) .

References:

1. Sen, P.; Ciraci, S.; Buldum, A.; Batra, I. P., Structure of aluminum atomic chains. *Physical Review B* **2001**, *64* (19), 195420.

2. Hayami, W.; Otani, S., The Role of Surface Energy in the Growth of Boron Crystals. *The Journal of Physical Chemistry C* **2007**, *111* (2), 688-692.