Long-range ordering and local structural disordering of BiAgSe₂ and BiAgSeTe thermoelectric

Weifeng Huang ^a, Yingcai Zhu^b, Yong Liu^{c*}, Shi Tao ^d, Changchun Yang ^a, Qianshun Diao^b, Zhen Hong^b, Haijiao Han^b, Lijuan Liu ^e, Wei Xu ^{b*}

^a School of Electronic Engineering, Jiujiang University, Jiujiang, 332005, China

^b Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Chinese Academy of Sciences, Beijing, 100049, China.

^c Foshan (Southern China) Institute for New Materials, Foshan, 528200, Guangdong, P. R. China ^dSchool of Electronic and Information Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, China

^e School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001,

China

Table S1 Cr	vstallogranhi	ic information	of BiAgSez	BiAgTe	BisSea
	v stanozi apin	ic mitor mation	UI DILLEDU/		DINCO

BiAgSe ₂ -a-phase	$Pm\overline{3}1$, SG. No.164,a=b=4.18 Å, c= 19.67Å								
8 - 1	α=β=90°,	γ=120°		,					
	X	у	Z	Occupation	Wyckoff site				
Ag	0	0	0	1	1a				
Bi	0	0	0.5	1	1b				
Ag	0.333333	0.666667	0.672	1	2d				
Bi	0.333333	0.666667	0.163	1	2d				
Se	0	0	0.253	1	2c				
Se	0.333333	0.666667	0.926	1	2d				
Se	0.333333	0.666667	0.406	1	2d				
BiAgSe ₂ -β-phase	<i>R</i> 3 <i>m</i> , SG No.166, a=b= 4.201Å, c=18.865 Å								
	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$								
	X	у	Z	Occupation	Wyckoff site				
Ag	0	0	0	1	3a				
Bi	0	0	0.5	1	3b				
Se	0	0	0.254	1	6c				
BiAgSe ₂ -y-phase	Fm3m, s	SG No.225, a	=b= 5.832	2Å					
	α=β=90°,	γ=120°							
	X	У	Z	Occupation	Wyckoff site				
Ag	0	0	0	0.5	4a				
Se	0.5	0.5	0.5	1	4b				
Bi	0	0	0	0.5	4a				
BiAgTe ₂	$R\overline{3}m$, SG	No.166, a=	b= 4.453	Å, c=20.954 Å					
	α=β=90°,	γ=120°							
	X	у	Z	Occupation	Wyckoff site				
Ag	0	0	0	1	3a				
Bi	0	0	0.5	1	3b				
Те	0	0	0.744	1	6c				

*Correspondence should be addressed to xuw@mail.ihep.ac.cn and liuy08@qq.com

Bi ₂ Se ₃	^{R3m} , SG No.166, a=b= 4.191Å, c=29.929Å α=β=90°, γ=120°							
	X	у	Z	Occupation	Wyckoff site			
Bi	0	0	0.398	1	6c			
Se	0	0	0.216	1	6с			
Se	0	0	0	1	3a			

Figure.S1 Electronic band structure of α -BiAgSe₂

Figure.S2 Electronic band structure of $\beta\textsc{-BiAgSe}_2$

Fig.S3 Electronic Band structure of cubic BiAgSeTe; the inset figure shows the first Brillouin zone (BZ) of BiAgSeTe with high-symmetry points (red points) for calculations.

Figure.S4 Projected partial density of electronic states for α -phase BiAgSe₂

Figure.S5 Projected partial density of electronic states for β -phase BiAgSe₂

Figure.S6 Projected partial density of electronic states for γ-phase BiAgSeTe

Figure.S7 Comparison of experimental and theoretical XANES spectra at Bi L_3 -edge for (a) BiAgSe_{0.5}Te_{1.5}, (b) BiAgSe_{1.5}Te_{0.5}. Note that hexagonal structures were used BiAgSe₂ and BiAgTe₂ models while cubic structure was used for BiAgSeTe.

Figure.S8 Comparison of experimental and theoretical XANES spectra at Se *K*-edge for (a) BiAgSe₂ (b) BiAgSe_{1.5}Te_{0.5}. Note that hexagonal structures were used BiAgSe₂ and BiAgTe₂ models while cubic structure was used for BiAgSeTe.

Figure.S9 Comparison of experimental and theoretical XANES spectra at Se *K*-edge for (a) BiAgSeTe (b) $BiAgSe_{0.5}Te_{1.5}$. Note that hexagonal structures were used $BiAgSe_2$ and $BiAgTe_2$ models while cubic structure was used for BiAgSeTe.

BiAgSe ₂	S	Р	D	СТ	BiAgTe ₂	S	Р	D	СТ
Ag L ₃					Ag L ₃				
Ag	0.731	0.518	9.879	-0.128	Ag	0.812	0.555	9.859	-0.225
Bi	1.936	2.173	10.489	0.402	Bi	1.923	2.313	10.445	0.321
Se	1.977	3.868	0.293	-0.137	Те	1.952	3.684	0.412	-0.048
BiAgSe ₂	S	Р	D	СТ	BiAgTe ₂	S	Р	D	СТ
Bi L ₃					Bi L ₃				
Ag	0.725	0.519	9.879	-0.123	Ag	0.798	0.547	9.859	-0.204
Bi	1.936	2.172	10.490	0.402	Bi	1.924	2.291	10.455	0.328
Se	1.976	3.859	0.305	-0.140	Те	1.956	3.698	10.409	-0.063
BiAgSe ₂	S	Р	D	СТ	BiAgTe ₂	S	Р	D	СТ
Se L ₃					Te <i>L</i> ₃				
Ag	0.745	0.503	9.879	-0.128	Ag	0.823	0.539	9.860	-0.221
Bi	1.939	2.148	10.482	0.432	Bi	1.925	2.288	10.441	0.346
Se	1.977	3.885	0.291	-0.153	Те	1.951	3.704	0.407	-0.063
BiAgSeT	S	Р	D	СТ	BiAgSeT	S	Р	D	СТ
е					е				
Ag L₃					Te L ₃				
Bi	1.902	2.721	10.251	0.125	Bi	1.968	2.128	10.366	0.536
Ag	0.590	0.546	9.835	0.029	Ag	0.594	0.535	9.830	0.042

Table.S2. The electron number counts for s, p, d electrons and the differentially calculated charge transfer¹ as retrieved from the full multiple scattering theory calculations using FEFF9.0 code.

Se	1.970	4.112	0.185	-0.266	Se	1.972	4.143	0.193	-0.309
Те	1.921	3.676	0.293	0.111	Те	1.929	3.778	0.298	-0.004

Table.S3 EXAFS fitting results for different structural models at the Bi L₃-edge

CN: coordination number, R: bond distance, σ^2 : means square relative displacement, ΔE : energy

shift; R-factor: fitting quality

		,	01	,		
Samples k ³ weighted,	Path	CN	R	σ ² (×10 ³)	ΔΕ	R-factor
k range∈(3-10) Å ⁻ 1						
R range∈(1.5-3)Å						
BiAgSe ₂ -Bi ₂ Se ₃	Bi-Se1	3.0	2.8670±0.0889	11.3±11.0	5.6±4.7	0.02
	Bi-Se2	2.7	3.0748±0.1308	13.0±5.5	5.6±4.7	
BiAgSe ₂ -β-phase	Bi-Se	1.9	2.7923±0.0336	12.0±4.6	-9.9±5.2	0.06
BiAgSeTe- Bi ₂ Se ₃	Bi-Se1	0.8	2.8971±0.1890	31.3±7.2	18.6±15.1	0.31
	Bi-Se2	0.9	3.1330±0.4263	75.4±17.1	18.6±15.1	

Figure.S10 Best fit of the Bi L₃-edge EXAFS of BiAgSe₂ in k-space (left panel) and R-space (right panel) by using (a, b) distorted model structure with two Bi-Se bond lengths and (c,d) the original hexagonal with one Bi-Se bond lengths

Figure.S11 Best fit of the Bi L₃-edge EXAFS of BiAgSeTe in k-space (a) and R-space (b) by using distorted model structure with two Bi-Se bond lengths

Table.S4 EXAFS fitting results for different structural models at the Se K-edge								
BiAgSe ₂	Path	CN	R	σ² (×10-3)	ΔE	R-factor		
k ³ weighted,								
k range∈(2.0-9.7) Å-1								
R range∈(1.5-3)Å								
BiAgSe ₂ -β-phase	Se-Ag	2.7	2.7407±0.0889	26.59±11.0	1.3±1.1	0.04		
	Se-Bi	2.3	2.8656±0.1308	17.0±5.5	1.3±1.1	_		
BiAgSeTe	Path	CN	R	σ ² (×10 ⁻³)	ΔΕ	R-factor		
k ³ weighted,								
k range∈(2.0-11) Å ⁻¹								
R range∈(1-3)Å								

BiAgSe ₂ -γ-phase	Bi-Se	0.4	2.8169±0.02	5.3 ±1.8	4.7±2.4	0.07
R range∈(1-3)Å						
k range∈(2.0-11) Å-1						
k ³ weighted,						
BiAgSeTe	Path	CN	R	σ² (×10 ⁻³)	ΔE	R-factor
	Se-Bi	2.5	2.8020±0.0817	25.6±17.8	2.4±0.2	
BiAgSe ₂ -β-phase	Se-Ag	0.3	2.6471±0.0482	12.3±6.3	2.4±0.2	0.14

Figure.S12 Best fit of the Se *K*-edge EXAFS of BiAgSe₂ (a)in k-space and (b)R-space and that of BiAgSeTe (c)in k-space and (d)R-space

References

1. Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D., Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. *Phys. Rev. B* **1998**, *58* (Copyright (C) 2009 The American Physical Society), 7565.