Supporting Information for:

Study of photogenerated exciton dissociation in transition metal

dichalcogenide van der Waals heterojunction A2-MWS₄: A first-

principle study

Hong Cui,^{a, b} Yazhou Wang,^{*a, b} Tong Liu,^{a, b} Yunjian Chen,^{a, b} Pengyue Shan,^{a, b} Xue Bai,^{a, b} Qi Jiang,^{a, b} Xingchen Zhao,^{a, b} Zequan Li,^{a, b} Xujie Li,^{a, b} Fangfang Chen,^{a, b} Jiajun Zhang,^{a, b} Yang Han,^{a, b} Rong Feng, ^{a, b} Qin Kang,^{a, b} Hongkuan Yuan^c

Tab. S 1 Self-consistent energy of A2-MWS $_4$ with different values of cut-off energy.

		_
Cut-off energy (eV)	Energy (eV)	
400	-43.387	-
450	-43.388	
500	-43.391	
550	-43.391	
600	-43.391	
650	-43.392	
700	-43.392	

As indicated in **Tab. S 1**, the cut-off energy of A2-MWS₄ was set to 500eV because the calculation method was performed using the HSE (06) and GW0+BSE.[1, 2]

Fig. S 1 Variation of average atomic energy with dynamic steps in AIMD simulations of A2-MWS4 at different temperatures. (a)400K.

(b)500K. The inset(right) of the figure showed a snapshot of the structure at the point of maximum energy fluctuation.

Fig. S2 A2-MWS $_4$ partial (Mo, and W) band structures.

Fig. S3 A2-MWS $_4$ partial (Mo) band structures.

Fig. S4 A2-MWS4 partial(W) band structures.

As shown in **Fig. S2**, **Fig. S3**, and **Fig. S4**, the VBM of A2-MWS4 is mainly contributed by the *d* (*d* xy, and *d* x^2-y^2) orbitals of W atoms and the CBM is mainly contributed by the d (*d* z^2) orbitals of MoS2.

Fig. S5 The phonon dispersion curve of (a) MoS₂, (b) WSe₂, (c)A2-MWS₄.

As seen in Fig. S5, the phonon dispersion curve of A2-MWS4, WSe2, and MoS2 had small imaginary frequency (~ 8.42 cm-1, ~ 0.07 cm-1, and ~ 1 cm-1) around the Γ point. These imaginary modes may be caused by the non-optimal lattice constants and the finite supercell size, which indicates that the structures was thermodynamically stable.

References

[1] Hwang YH, Yun WS, Cha G-B, Hong SC, Han SW. Thermally driven homonuclear-stacking phase of MoS2 through desulfurization. Nanoscale. 2019;11:11138-44.

[2] Hsu W-T, Lu L-S, Wang D, Huang J-K, Li M-Y, Chang T-R, et al. Evidence of indirect gap in monolayer WSe2. Nature Communications. 2017;8:929.