Supporting information

Phase stability determination of negative thermal expansion silicates by theory and experiment

Andreas Erlebach,^a Ghada Belhadj Hassine,^a Christian Thieme,^b Katrin Thieme,^b Christian Rüssel,^c Marek Sierka^a*

^a Otto-Schott-Institute for Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany

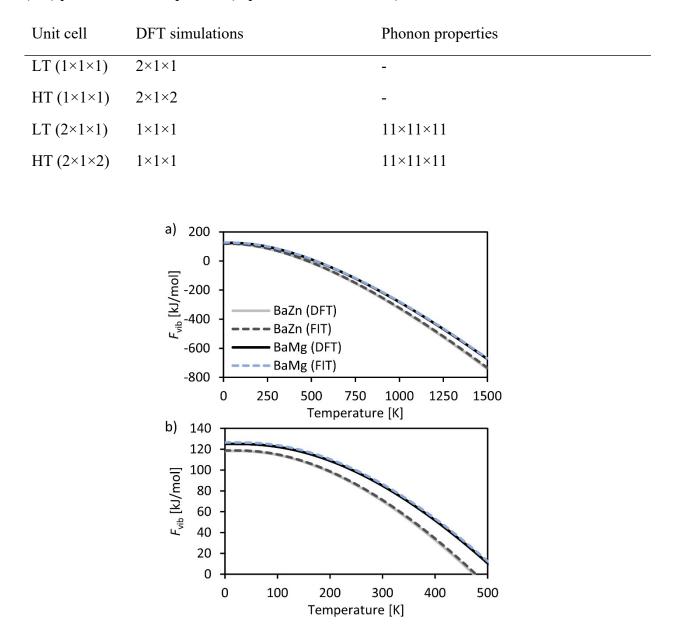
^b Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1, 06120, Halle (Saale), Germany

^c Otto-Schott-Institute for Materials Research, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany

Table S1. Lattice parameters [Å] of HT and LT phase calculated using DFT calculations and available experimental data.

Sample		DFT			Experiment		
		A	b	С	а	b	С
BaZn ^a	LT	7.181	12.691	13.680	7.277	12.799	13.687
	HT	7.802	12.956	6.614	7.610 ^b	13.004 ^b	6.719 ^b
BaMg50	LT	7.146	12.603	13.767			
	HT	7.760	12.981	6.641			
Sr50Zn ^c	HT	7.717	12.938	6.528	7.692 ^d	12.958 ^d	6.562 ^d
Sr50Mg50°	LT	7.100	12.601	13.518			
	HT	7.709	12.951	6.541	7.659 ^e	12.956 ^e	6.563 ^e
Sr25Mg75	LT	7.130	12.579	13.634			
	HT	7.719	12.968	6.611			

^a Experimental values taken from Ref. 5


^b Measured at 550 K

^c Experimental values taken from Ref. 6

^d Only HT phase obtained from glass crystallization

^e Experimental values for $Ba_{0.5}Sr_{0.5}Zn_{1.3}Mg_{0.7}Si_2O_7$ (x = 0.5, y = 0.35)

Table S2. Summary of **k**-point grids used for DFT simulations (using VASP with a **k**-point density of 13 $1/\text{Å}^{-1}$) and calculation of thermodynamic quantities from phonon frequencies (using phonopy with a **k**-point density of 140 $1/\text{Å}^{-1}$) for the original unit cells of the low (LT) and high temperature (HT) phase and their supercells (supercell size in brackets).

Figure S1. (a) Harmonic vibrational free energies F_{vib} of the high temperature phases of BaZn and BaMg calculated from phonon calculations (DFT) and the fitted model functions (FIT, eqs 1-8). (b) Low temperature range of (a).

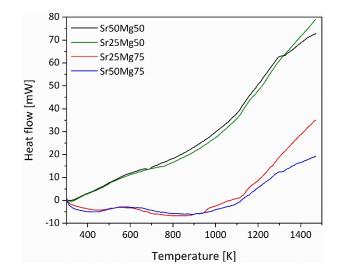


Figure S2. DSC profiles of the synthesized materials.

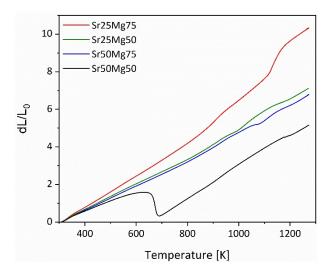


Figure S3. Results from dilatometry.

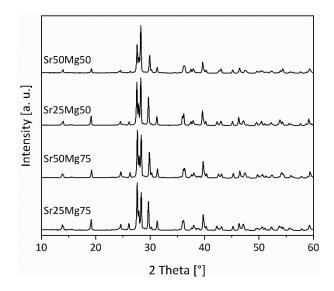


Figure S4. XRD patterns of the obtained compositions.