Understanding the Influence of Geometric and Electronic Structure on the Excited State Dynamical and Photoredox Properties of Perinone Chromophores

Kaylee A. Wells, ^{a†} Jonathan R. Palmer,^{a†} James E. Yarnell,^{ab} Sofia Garakyaraghi,^a Barry C. Pemberton,^{ac} Joseph M. Favale,^a Mary Katharine Valchar,^a Arnab Chakraborty,^a and Felix N. Castellano^a*

^{*a*} Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.

^b Department of Chemistry & Chemistry Research Center, United States Air Force Academy, Colorado Springs, Colorado 80840-6230, USA.

^c School of Natural Sciences and Mathematics, Stockton University, Galloway, 08205, USA.
 [†] These authors contributed equally.

1. Structural Characterization Data

Figure S2. ¹H NMR spectrum of 1 (zoomed into aromatic region) in CD₂Cl₂ (500 MHz).

Figure S3. High resolution mass spectrum of 1.

8.70 8.65 8.60 8.55 8.50 8.45 8.40 8.35 8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30 Figure S5. ¹H NMR spectrum of **2** (zoomed into aromatic region) in CD₂Cl₂ (500 MHz).

Figure S6. High resolution mass spectrum of 2.

Figure S7. ¹H NMR spectrum of **3** in CD_2Cl_2 (500 MHz).

Figure S8. ¹H NMR spectrum of **3** (zoomed into aromatic region) in CD₂Cl₂ (500 MHz).

Figure S9. High resolution mass spectrum of 3.

Figure S10. ¹H NMR spectrum of 4 in CD₂Cl₂ (500 MHz).

Figure S11. ¹H NMR spectrum of 4 (zoomed into aromatic region) in CD₂Cl₂ (500 MHz).

Figure S12. ¹H NMR spectrum of 4 (zoomed into aliphatic region) in CD₂Cl₂ (500 MHz).

Figure S13. High resolution mass spectrum of 4.

Figure S14. ¹H NMR spectrum of 5 in CD₂Cl₂ (500 MHz).

Figure S15. ¹H NMR spectrum of 5 (zoomed into aromatic region) in CD₂Cl₂ (500 MHz).

Figure S16. High resolution mass spectrum of 5.

Figure S17. ¹H NMR spectrum of **6** in CD_2Cl_2 (500 MHz).

Figure S18. ¹H NMR spectrum of **6** (zoomed into aromatic region) in CD₂Cl₂ (500 MHz).

Figure S19. High resolution mass spectrum of 6.

Figure S21. ¹H NMR spectrum of 7 (zoomed into aromatic region) in CD₂Cl₂ (500 MHz).

Figure S22. High resolution mass spectrum of 7.

Figure S23. ¹H NMR spectrum of 8 in CD_2Cl_2 (500 MHz).

Figure S24. ¹H NMR spectrum of 8 (zoomed into aromatic region) in CD₂Cl₂ (500 MHz).

Figure S25. ¹H NMR spectrum of 8 (zoomed into aliphatic region) in CD₂Cl₂ (500 MHz).

Figure S26. High resolution mass spectrum of 8.

2. Additional DFT Results

Figure S27. Frontier orbital diagram of 1-4 using M06-D3/Def2-TZVP level of theory.

Figure S28. Frontier orbital diagram of 5-8 using M06-D3/Def2-TZVP level of theory.

	1	2	3	4	5	6	7	8
LUMO+1	-1.372	-1.988	-1.242	-1.766	-1.304	-1.920	-1.122	-1.686
LUMO	-2.444	-2.322	-2.514	-3.277	-2.452	-2.321	-2.592	-3.378
НОМО	-5.911	-5.848	-5.733	-5.922	-6.744	-6.573	-6.443	-6.742
HOMO-1	-7.406	-6.866	-6.878	-7.251	-7.148	-6.999	-7.100	-7.264
HOMO-2	-7.477	-7.385	-7.283	-7.415	-8.049	-7.235	-7.408	-7.710

Table S1. Select frontier molecular orbital energies (eV) as determined at the M06-D3/Def2-TZVP level of theory.

molecule	electronic transitions	$\lambda_{calc} (nm)$	f	composition ^[a]
1	$S_0 \rightarrow S_1$	459.8	0.2795	$H \rightarrow L (96\%)$
	$S_0 \rightarrow S_2$	341.1	0.0710	$H \rightarrow L + 1 (87\%)$
2	$S_0 \rightarrow S_1$	451.2	0.3724	$H \rightarrow L (92\%)$
	$S_0 \rightarrow S_2$	396.5	0.1171	$H \rightarrow L + 1 (85\%)$
3	$S_0 \rightarrow S_1$	493.7	0.3415	$H \rightarrow L (98\%)$
	$S_0 \rightarrow S_2$	356.3	0.0469	$H \rightarrow L + 1 (89\%)$
4	$S_0 \rightarrow S_1$	608.6	0.3636	$H \rightarrow L (99\%)$
	$S_0 \rightarrow S_2$	384.3	0.3868	H -1 \rightarrow L (94%)
5	$S_0 \rightarrow S_1$	385.4	0.0659	$H \rightarrow L (94\%)$
	$S_0 \rightarrow S_2$	326.1	0.1638	H -1 \rightarrow L (87%)
6	$S_0 \rightarrow S_1$	379.5	0.1507	$H \rightarrow L (92\%)$
	$S_0 \rightarrow S_2$	344.6	0.0113	$\begin{array}{c} \text{H} \text{-1} \rightarrow \text{L} \ (63\%) \\ \text{H} \rightarrow \text{L} \text{+1} \ (30\%) \end{array}$
7	$S_0 \rightarrow S_1$	400.7	0.3584	$H \rightarrow L (98\%)$
	$S_0 \rightarrow S_2$	340.7	0.0430	$H -2 \rightarrow L (90\%)$
8	$S_0 \rightarrow S_1$	465.1	0.4268	$H \rightarrow L (97\%)$
	$S_0 \rightarrow S_2$	396.8	0.0658	H -1 \rightarrow L (97%)

Table S2. Selected electronic excitation wavelengths (nm) and corresponding oscillator strengths (f), compositions, and contributions.

[a] Only contributions >10% are included.

3. Additional Optical Spectra

Figure S29. Solvent-Dependent Absorbance and Emission of Chromophore 1.

Figure S30. Solvent-Dependent Absorbance and Emission of Chromophore 2.

Figure S31. Solvent-Dependent Absorbance and Emission of Chromophore 3.

Figure S32. Solvent-Dependent Absorbance and Emission of Chromophore 4.

Figure S33. Solvent-Dependent Absorbance and Emission of Chromophore 5.

Figure S34. Solvent-Dependent Absorbance and Emission of Chromophore 6.

Figure S35. Solvent-Dependent Absorbance and Emission of Chromophore 7.

Figure S36. Solvent-Dependent Absorbance and Emission of Chromophore 8.

Figure S37. Static 77 K photoluminescence emission spectra of **1**-**4** (A) and **5**-**8** (B) in 2-methyl-THF.

Figure S38. Normalized differential voltametric measurement for 1-4 (1 grey, 2 red, 3 blue, 4 purple) in ACN vs Ag/AgNO₃. $Fc/Fc^+ = 0.032$.

Figure S39. Normalized differential voltametric measurement for 5-8 (5 grey, 6 red, 7 blue, 8 purple) in ACN vs Ag/AgNO₃. $Fc/Fc^+ = 0.032$.

Figure S40. Photoluminescence decay of chromophore 1 in THF.

Figure S41. Photoluminescence decay of chromophore 2 in THF.

Figure S42. Photoluminescence decay of chromophore **3** in THF. Due to the short lifetime of this molecule, the instrument response function (IRF) was used in a deconvolution procedure to obtain the lifetime.

Figure S43. Photoluminescence decay of chromophore 5 in THF.

Figure S44. Photoluminescence decay of chromophore 6 in THF.

Figure S45. Photoluminescence decay of chromophore 7 in THF.

Figure S46. Photoluminescence decay of chromophore 8 in THF.

Figure S47. Normalized absorption (black) and emission (red) spectra of chromophore **5** overlaid with the two lowest energy vertical transitions (blue) calculated at the M06-D3/Def2-TZVP level of theory.

Figure S48. Excited-state difference spectra of **1** (A) and **2** (B) in THF following 495 nm pulsed excitation and **5** (C) and **6** (D) in THF following 400 nm pulsed excitation (105 fs fwhm).

Figure S49. Ultrafast transient absorption kinetic data of **1-4** in THF (**1** (A), **2** (B), and **3** (C) following 495 nm excitation and **4** (D) following 650 nm excitation). Single wavelength kinetic analysis at specified wavelength.

Figure S50. Ultrafast transient absorption kinetic data of **5-8** in THF (**5** (A), **6** (B), and **7** (C) following 400 nm excitation and **8** (D) following 495 nm excitation). Single wavelength kinetic analysis at specified wavelength.

molecule	solvents	Δf	v _A (cm ⁻¹)	v _F (cm ⁻¹)	v _A - v _F (cm ⁻¹)	fitted slope ^[a] (cm ⁻¹)	cavity volume ^[b] (x 10 ⁻²² cm ³)	$ \begin{array}{c} \mu_e - \mu_g^{[c]} \\ (D) \end{array} $
-	toluene	0.0132	22272	16892	5380			
	dioxane	0.0246	22422	16807	5615			
	EtOAc	0.1998	22523	16807	5716			
1	THF	0.2096	22422	16722	5700	1270	3.46	6.6
	DCM	0.2172	22321	16611	5710			
	DMSO	0.2635	22272	16475	5797			
	ACN	0.3055	22523	16639	5884			
	toluene	0.0132	22624	17483	5141			
	dioxane	0.0246	22831	17513	5318			
	EtOAc	0.1998	22883	17513	5370			
2	THF	0.2096	22831	17422	5409	1694	4.09	8.3
	DCM	0.2172	22779	17331	5448			
	DMSO	0.2635	22831	17123	5708			
	ACN	0.3055	23042	1/2/1	5771			
	toluene	0.0132	20790	15015	5775			
	Tro A a	0.0240	21055	15100	5947			
2	EIUAC	0.1998	21180	15058	6148	2020	4.05	0.0
3		0.2096	21097	15015	5070	2030	4.03	9.0
	DCM	0.2172	21055	13085	5970 6476			
	ACN	0.2055	21055	14377	6507			
	toluene	0.0132	17123	13055	4068			
	dioxane	0.0246	17513	13141	4372			
	EtOAc	0 1998	17637	13055	4582			
4	THF	0 2096	17544	12987	4557	2612	4 82	11.2
·	DCM	0.2172	17241	12903	4338			
	DMSO	0.2635	17575	12723	4852			
	ACN	0.3055	17825	12674	5151			
	toluene	0.0132	29412	19646	9766			
	dioxane	0.0246	29762	19231	10531			
	EtOAc	0.1998	29851	19417	10434			
5	THF	0.2096	29762	19268	10494	2214	2.86	7.9
	DCM	0.2172	29586	19268	10318			
	DMSO	0.2635	29499	18622	10877			
	ACN	0.3055	29762	19011	10751			
	toluene	0.0132	26525	20964	5561			
	dioxane	0.0246	26667	20661	6006			
6	EtOAc	0.1998	26596	20747	5849	1560	2.50	7 4
0		0.2096	20323	20370	5949	1309	3.32	7.4
	DMSO	0.2172	26385	20307	6183			
	ACN	0.2055	26525	20202	6323			
	toluene	0.0132	25974	20202	5524			
	dioxane	0.0246	26316	20202	6114			
	EtOAc	0.1998	26385	20202	6183			
7	THF	0.2096	26316	20243	6073	3134	3.44	10.3
	DCM	0.2172	26110	20202	5908			
	DMSO	0.2635	26042	19380	6662			
	ACN	0.3055	26318	19380	6938			
-	toluene	0.0132	22371	17513	4858			
	dioxane	0.0246	22936	17422	5514			
	EtOAc	0.1998	23202	17182	6020			
8	THF	0.2096	23148	17036	6112	5793	4.25	15.6
	DCM	0.2172	22831	17241	5590			
	DMSO	0.2635	23042	15823	7219			
	ΔCN	0 3055	23310	16584	6726			

Table S3. Absorbance and Emission Solvent Dependence Data for Chromophores 1-8.

 ACN
 0.3055
 23310
 16584
 6726

 [a] Fitted slopes obtained from linear regressions on plots in Figure 8. [b] Solvent cavity volumes were obtained from the ground state geometry optimization (M06-D3/Def2-TZVP) using the PCM solvation model.
 6726

Cartesian coordinates of all ground state optimized structures:

P1 Optimized Structure

С	2.27000700	-2.51136300	0.00000200
С	1.38811000	-1.45683000	0.00000100
С	1.87983500	-0.12575600	0.00000000
С	3.27410900	0.11007400	0.00000100
С	4.14431800	-1.00137900	0.00000200
С	3.65079100	-2.27711700	0.00000200
Н	1.87216200	-3.51922000	0.00000200
С	0.98904500	0.97333100	-0.00000100
С	3.73671700	1.44269300	0.00000000
Н	5.21397000	-0.82204900	0.00000200
Н	4.33207800	-3.11980700	0.00000300
С	2.84931300	2.48063500	-0.00000100
С	1.46285800	2.26197900	-0.00000100
Н	4.80571200	1.62496600	0.00000100
Н	3.21279200	3.50155100	-0.00000100
Н	0.77310900	3.09219300	-0.0000200
Ν	-0.37190800	0.63782200	-0.00000200
Ν	0.01894400	-1.70999800	0.00000000
С	-0.76324400	-0.70888500	-0.00000100
С	-1.48926800	1.48885400	-0.00000400
С	-4.00319800	0.90346000	0.00000000
С	-4.90433800	-0.15064300	0.00000200
С	-4.46304400	-1.47110300	0.00000200
С	-3.11031900	-1.77775800	0.00000000
С	-2.21966800	-0.72387400	-0.00000100
С	-2.65946100	0.59208000	-0.00000100
Н	-4.33492500	1.93500500	0.00000000
Н	-5.96832700	0.05278900	0.00000200
Н	-5.19224900	-2.27233700	0.00000300
Н	-2.76022400	-2.80286100	0.00000100
0	-1.45984300	2.69307600	-0.00000200

P2 Optimized Structure

С	3.01707200	-2.65546500	0.00000100
С	2.26027900	-1.50775800	-0.00000100
С	2.90050000	-0.24147600	0.00000000
С	4.31271600	-0.16621800	0.00000300
С	5.05148900	-1.36909200	0.00000500
С	4.41553900	-2.58003300	0.00000400
Н	2.50716100	-3.61147100	0.00000000
С	2.14048900	0.95236800	-0.00000200
С	4.92402500	1.10516500	0.00000400
Н	6.13459700	-1.31229700	0.00000700
Н	4.99624800	-3.49500000	0.00000500
С	4.16094600	2.23748900	0.00000200
С	2.75867800	2.17853300	-0.00000100
Н	6.00684100	1.16438500	0.00000600
Н	4.63842100	3.21034900	0.00000200
Н	2.16936900	3.08238900	-0.00000300
Ν	0.74919900	0.77509700	-0.00000500
Ν	0.87165200	-1.60304400	-0.00000400
С	0.20714900	-0.51947800	-0.0000500
С	-0.25896100	1.75549600	-0.0000900
С	-2.80372000	1.47484600	0.00000000
С	-3.86292300	0.54047100	0.00000100
С	-3.57401200	-0.85791000	0.00000000
С	-2.23229700	-1.30143200	-0.0000300
С	-1.24059700	-0.36990400	-0.00000500
С	-1.52650400	1.00793600	-0.00000400
Н	-3.01484000	2.53909100	0.00000100
Н	-2.01068300	-2.36330400	-0.00000400
0	-0.08322100	2.94732900	-0.0000300
С	-5.20982000	0.95713800	0.00000500
С	-4.64799500	-1.77147100	0.0000200
С	-6.22546400	0.04429500	0.00000700
С	-5.94140100	-1.33293500	0.00000500
Н	-5.42216800	2.02091400	0.00000600
Н	-7.25593400	0.37882700	0.00000900
Н	-6.75590800	-2.04743500	0.00000600
Н	-4.42442100	-2.83285300	0.00000100

P3 Optimized Structure

С	-3.01168100	2.41457000	0.42945400
С	-2.09812600	1.40945800	0.21158600
С	-2.53731000	0.08247500	0.00742500
С	-3.92409400	-0.19432300	-0.05404000
С	-4.83224200	0.86131700	0.18007600
С	-4.38255800	2.12901700	0.42970400
Н	-2.64758100	3.42424500	0.57816700
С	-1.59168000	-0.94861900	-0.17936900
С	-4.33696000	-1.50380100	-0.36434400
Н	-5.89486300	0.64690900	0.14541300
Н	-5.09234800	2.92897200	0.60542800
С	-3.40386700	-2.46642700	-0.62152600
С	-2.02889300	-2.20467900	-0.53016500
Н	-5.39748700	-1.72565500	-0.41096300
Н	-3.71897000	-3.46825300	-0.88913000
Н	-1.32981900	-3.00220700	-0.71586600
Ν	-0.21476500	-0.60029300	-0.01953700
Ν	-0.75430200	1.70484800	0.12540500
С	0.11196000	0.77386600	0.00320700
С	0.74373200	-1.59405200	0.27487300
0	0.41917300	-2.72452400	0.55288200
С	3.24278000	2.80681100	-0.41577600
С	4.22066900	1.85453900	-0.31365100
С	3.88275500	0.50425900	-0.10487300
С	2.51449700	0.15080400	-0.01501300
С	1.52323000	1.14294900	-0.11475200
С	1.89356000	2.45403400	-0.31105000
Н	5.90015500	-0.23829500	-0.04225300
Н	3.50907000	3.84416400	-0.57736700
Н	5.26835000	2.12527600	-0.38828100
С	4.85226500	-0.50973100	0.02933800
С	2.15642500	-1.19037500	0.20665500
Н	1.12109300	3.20857700	-0.38583300
С	3.12946800	-2.15103900	0.34254300
С	4.48351900	-1.80828800	0.25108000
Н	2.83002700	-3.17756700	0.51326400
Н	5.23775100	-2.57843600	0.35500500

P4 Optimized Structure

С	-4.12873400	-2.60602200	-0.44403000
С	-3.32856300	-1.50799900	-0.22842000
С	-3.90315700	-0.23924100	0.00578600
С	-5.31013800	-0.11809400	0.09357600
С	-6.10053500	-1.26457700	-0.14051100
С	-5.52181800	-2.47335700	-0.41590200
Н	-3.65769300	-3.56657800	-0.61506200
С	-3.07387100	0.88692000	0.19561000
С	-5.86063800	1.13309500	0.42842900
Н	-7.17937800	-1.16786100	-0.08534800
Н	-6.14358000	-3.34338900	-0.59048900
С	-5.03583600	2.19022500	0.68304200
С	-3.64200600	2.08306800	0.56772400
Н	-6.93811400	1.23505700	0.49461600
Н	-5.45471500	3.14812100	0.96782000
Н	-3.03320700	2.95111100	0.75363100
Ν	-1.66695900	0.69288700	0.01435500
Ν	-1.96008900	-1.65515500	-0.17498500
С	-1.19851200	-0.63941900	-0.04864600
С	-0.82307000	1.78826700	-0.24743100
0	-1.25560800	2.89356400	-0.46887400
С	2.13418800	-2.34801600	0.22108000
С	3.01158400	-1.29145000	0.13774400
С	2.51679200	0.01334200	-0.00830800
С	1.12357000	0.22620300	-0.05695600
С	0.24566900	-0.86686800	0.02469000
С	0.75779500	-2.13975300	0.16017400
Н	2.53143800	-3.34911500	0.33396300
С	3.38505400	1.11261300	-0.11606600
С	0.62946400	1.52945300	-0.21765600
Н	0.07356300	-2.97544000	0.22137800
С	1.49923500	2.58884500	-0.33156700
С	2.87836500	2.37923000	-0.27772300
Н	1.09771500	3.58617600	-0.45604000
Н	3.56587300	3.21165800	-0.36161300
С	4.84350700	0.90227000	-0.06059700
С	4.46425200	-1.53343200	0.19709500
Ν	5.28498600	-0.40831100	0.09228900
0	5.63951100	1.81048200	-0.14146700
0	4.93171600	-2.64139000	0.32906300
С	6.72820600	-0.59262000	0.14447400
Н	7.18559800	-0.21707600	-0.77008700
Н	6.93171700	-1.65220400	0.25410200
Н	7.14543700	-0.04375500	0.98806700

P5 Optimized Structure

Ν	-0.32865500	0.48137900	-0.00000100
Ν	-0.73219300	-1.72866800	0.00000000
С	0.17326100	-0.81149100	-0.00000100
С	0.68576300	1.45054700	0.00000300
0	0.52862700	2.63836200	0.00000200
С	-3.23508600	-1.50313600	-0.00000100
С	-4.26871100	-0.58145500	-0.00000100
С	-1.93701700	-1.02065300	-0.00000100
С	-4.02071000	0.79057000	-0.00000100
С	-1.70700400	0.36964500	-0.00000100
С	-2.72938300	1.29535600	-0.0000100
С	2.61925400	-1.66962700	0.00000000
С	3.93841200	-1.22790700	0.00000000
С	1.62525500	-0.71659800	0.00000000
С	4.24763800	0.12482800	0.00000000
С	1.93814300	0.64664400	0.00000100
С	3.24143600	1.08472100	0.00000100
Н	3.46900900	2.14430100	0.00000200
Н	2.38112900	-2.72621100	-0.00000100
Н	4.74159500	-1.95498400	0.00000000
Н	5.28542300	0.43459300	0.00000100
Н	-3.42560900	-2.56953500	0.00000000
Н	-5.29395400	-0.93172400	-0.00000100
Н	-4.85678300	1.47960500	-0.00000100
Н	-2.53140300	2.35941100	-0.00000200

P6 Optimized Structure

Ν	1.49635300	0.53295300	0.00000100
Ν	1.71308400	-1.70465200	0.00000000
С	0.88597000	-0.71468700	0.00000000
С	0.57436600	1.59121000	0.00000400
0	0.84296800	2.75987600	0.00000200
С	4.22448900	-1.69038600	-0.00000100
С	5.33163700	-0.85960300	-0.00000100
С	2.97088100	-1.10029800	0.00000000
С	5.20106400	0.52914700	-0.00000100
С	2.85953200	0.30479700	0.00000000
С	3.95756700	1.14094000	-0.0000100
С	-1.60506000	-1.35496800	0.00000000
С	-2.91652800	-0.81842200	0.00000000
С	-0.54918500	-0.50089600	0.00000100
С	-4.04847600	-1.65518200	-0.00000100
С	-3.10902200	0.59405800	0.00000000
С	-0.74293700	0.90646000	0.00000100
С	-5.31040100	-1.12793200	-0.00000100
Н	-3.89920100	-2.72953900	-0.00000100
С	-4.42091600	1.10390000	-0.0000100
С	-1.98378900	1.45390200	0.00000000
С	-5.49934100	0.26317700	-0.00000100
Н	-6.17156200	-1.78548800	-0.00000100
Н	-4.55871400	2.17984700	-0.00000100
Н	-2.12270300	2.53018400	0.00000000
Н	-6.50397800	0.66853600	-0.00000100
Н	-1.46396700	-2.43031800	0.00000000
Н	3.85063100	2.21790400	-0.0000100
Н	6.09255200	1.14476900	-0.0000200
Н	6.32368600	-1.29522200	-0.00000100
Н	4.32435200	-2.76908900	0.00000000

P7 Optimized Structure

N	0.90166800	-0.40641000	0.00000000
Ν	1.43542800	1.77494800	0.00000000
С	0.46218400	0.91722500	0.00000000
С	0.08684100	-1.54039800	0.00000100
0	0.56703500	-2.64858600	-0.00000100
С	-2.83155200	2.69422800	0.00000100
С	-3.70455700	1.64044500	0.00000000
С	-3.23220200	0.31239400	0.00000000
С	-1.83607800	0.08000300	0.00000000
С	-0.95477100	1.18501700	0.00000100
С	-1.45127300	2.46740000	0.00000100
Н	-3.20534800	3.71059100	0.00000100
С	-4.10571000	-0.79352100	0.00000000
С	-1.35711400	-1.25098600	0.00000000
Н	-0.75571600	3.29803000	0.00000100
С	-2.24279000	-2.30204100	0.00000000
С	-3.62277000	-2.07361000	0.00000000
Н	-1.85042600	-3.31194300	0.00000000
Н	-4.30514000	-2.91432200	-0.00000100
С	3.91436000	1.44427500	0.00000000
С	2.59283800	1.01932300	0.00000000
С	2.29310700	-0.35042000	0.00000000
С	3.27577200	-1.32472200	0.00000000
С	4.58782000	-0.88148400	-0.0000100
С	4.90254400	0.47859000	-0.0000100
Н	4.15036100	2.50162800	0.00000000
Н	3.02778100	-2.37640200	0.00000000
Н	5.38955200	-1.61033500	-0.00000100
Н	5.94352900	0.77965000	-0.00000100
Н	-5.17462900	-0.60849200	0.00000000
Н	-4.77580800	1.81018900	0.00000000

P8 Optimized Structure

N	-2.37171500	0.41423700	0.00000600
Ν	-2.73660000	-1.80118100	-0.00000500
С	-1.83294000	-0.87251300	0.00000000
С	-1.64744500	1.60543700	0.00001900
0	-2.20009800	2.67642200	0.00003600
С	1.58620800	-2.38970000	0.00000700
С	2.38264800	-1.26889600	0.00000500
С	1.79727900	0.00963400	0.00000200
С	0.39319600	0.13488000	0.00000500
С	-0.39990900	-1.03454700	0.00000200
С	0.19667600	-2.27532600	0.00000300
Н	2.05705600	-3.36473600	0.00001200
С	2.59538300	1.16684900	-0.0000200
С	-0.18004800	1.42502400	0.00001400
Н	-0.42807700	-3.15980400	0.00000200
С	0.62462600	2.53918600	0.00001700
С	2.01452100	2.41100900	0.00000600
Н	0.16144800	3.51800300	0.00002600
Н	2.65050200	3.28725200	0.00000400
С	4.06738900	1.04702600	-0.00002200
С	3.84997300	-1.41846000	0.00001300
Ν	4.59577600	-0.23806800	-0.00001300
0	4.79885500	2.01068200	-0.00004200
0	4.38921900	-2.50088300	0.00004100
С	6.04886100	-0.33154300	-0.00002200
Н	6.45457700	0.15962900	-0.88369200
н	6.32166700	-1.38113100	-0.00002400
С	-5.23382400	-1.66314100	-0.00001700
С	-3.94877300	-1.13737300	-0.00000700
С	-3.75428100	0.25137700	-0.00000100
С	-4.80706300	1.14867000	-0.00000500
С	-6.08039300	0.60545700	-0.00001400
С	-6.29141100	-0.77502900	-0.00002100
Н	-5.38844500	-2.73521800	-0.00002200
Н	-4.64114000	2.21606900	0.00000100
Н	-6.93552700	1.27071100	-0.00001700
Н	-7.30671900	-1.15320300	-0.00002800
Н	6.45459100	0.15962900	0.88364200