Supporting Information

Structural and mechanistic insights into low-temperature CO oxidation over a prototypical high entropy oxide by Cu L-edge operando soft X-ray Absorption Spectroscopy

F. Tavani^a, M. Fracchia^b, Alessandro Tofoni^a, L. Braglia^c, A. Jouve^d,
S. Morandi^e, M. Manzoli^d, P. Torelli^c, P. Ghigna^b, P. D'Angelo^{a,*}
^aDipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.
^bDipartimento di Chimica, Università di Pavia, Via Taramelli 16, 27100 Pavia, Italy.
^cCNR - Istituto Officina dei Materiali, TASC, I-34149 Trieste, Italy.
^dDipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125, Torino, Italy.
^eDipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy.
* p.dangelo@uniroma1.it

Figure S1: (a) Cu $L_{2,3}$ -edge XAS spectra of Cu₂O in He at room temperature (dark red line) and of the Mg_{0.2}Co_{0.2}Ni_{0.2}Cu_{0.2}Zn_{0.2}O HEO upon exposure to CO flux at 235 °C for 50 minutes (blue line). The inset compares the Cu(I) L₃-edge peaks present in the Cu $L_{2,3}$ -edge spectra. (b) Cu $L_{2,3}$ -edge XAS spectra of Cu₂O (dark red line), CuO (yellow line) and metallic Cu (green line), where all spectra are measured in He at room temperature. The Cu $L_{2,3}$ -edge spectra of the Cu₂O, CuO and metallic Cu standards were aligned to the HEO spectra using the L₃-edge of CuO as a reference.

Figure S2: Comparison between the Cu(I) Cu L₃-edge feature measured upon exposure of the HEO surface to CO (50 minutes, 235 °C) and the theoretical Cu L₃-edge spectrum best reproducing the experimental curve (blue) and associated to the global minimum of the residual function Δ . The associated molecular cluster is also shown, with d = 2.1 Å, $\theta = 20^{\circ}$ and $\phi = 20^{\circ}$, where the Cu(I) cation, the oxygen and carbon atoms are depicted in blue, red and gray, respectively.

Figure S3: Distribution of the theoretical Cu L₃-edge spectra of the clusters modeling the interaction between the HEO surface and CO as a function of the distance between the Cu(I) cation and the CO carbon atom (d_{Cu-C}) and of Σ_1 . The values of Δ within 15%, 25% and 35% of the global minimum of Δ are shown in panels a, b and c, respectively.

Figure S4: (a) Distribution of the theoretical Cu L₃-edge spectra of the clusters modeling the interaction between the HEO surface and CO as a function of the distance between the Cu(I) cation and the CO carbon atom (d_{Cu-C}) and of Σ_1 . The values of Δ within 1.5% of the global minimum of Δ are shown on the color scale, while two ulterior selected spectral regions are evidenced in green and dark red lines, respectively. (b) Theoretical Cu L₃-edge spectra of two selected CO adsorbtion geometries (green and dark red lines) compared to the experimental curve (black line). The values of Δ associated to each theoretical spectrum are highlighted in panel a with the same green and dark red colors.