Supplementary Information for

Conservation of the Stokes-Einstein Relation in Supercooled Water

Gan Ren, Yanting Wang*

*Corresponding author. Email: wangyt@itp.ac.cn

1. Simulation details for the Jagla model

The initial configuration for the Jagla fluid model¹⁻³ consists of 1728 molecules with a constant box size determined under a constant pressure P = 153.33 bar at each temperature. Although the reduced unit is usually adopted when using the Jagla fluid model, we use the SI unit instead by assigning the unit of hardcore diameter d = 0.3 nm, that of potential $U_0 = 100k_{\rm B}$, and that of pressure $P_0 = U_0 / d^3$. All our molecular dynamics (MD) simulations were performed with the GROMACS MD simulation package^{4, 5} and the periodic boundary conditions were applied in all three directions of the Cartesian space. The van der Waals interactions were calculated directly with a truncated spherical cutoff of 1.0 nm. Twenty-four temperatures simulated with the Jagla model are in the range of 30–140 K. The system temperature was kept a constant by the Nosé-Hoover thermostat^{6, 7} and the pressure was controlled by the Parrinello-Rahman barostat.^{8, 9} The simulation time step is 1 fs and the total simulated time for each case ranges from 0.1 to 10 ns depending on the temperature. The *k* values within 2.5–14.5 nm⁻¹ with an interval of 1 nm⁻¹ for the Jagla fluid model are adopted to investigate the *k*

dependences of $D: \tau^{-1}$ and $D: T/\tau$. The viscosity $\eta = A\rho / Vq^2$ of Jagla is evaluated by A/VI because the box size / is different at different temperatures.

2. Supplementary Figures

Fig. S1 The diffusion constant *D* as a function of temperature *T* within 240-390 K for TIP5P (a) and within 30-140 K for Jagla (b).

Fig. S2 The structural relaxation time τ for various k values as a function of temperature T for TIP5P (a) and for Jagla (b). The interval between two adjacent k values is 2 nm⁻¹ for TIP5P and 1nm⁻¹ for Jagla.

Fig. S3 The viscosity η as a function of temperature T for TIP5P (a) and Jagla (b).

Fig. S4 The frictional coefficient α as a function of temperature T for TIP5P (a) and Jagla (b).

Fig. S5 Verification of the validities of the original SE relation $D: \tau^{-1}$ (a) and its three variants $D: T/\tau$ (b), $D: T/\eta$ (c), and $D: T/\alpha$ (d) for the Jagla fluid model. τ is calculated with the first maximum of static structure factor k = 12.5 nm⁻¹. The calculated data are represented by circles and fitted by $D: \tau^{-\xi_1}$, $D: (\tau/T)^{-\xi_2}$, $D: (\eta/T)^{-\xi_3}$, and $D: (\alpha/T)^{-\xi_4}$, respectively. The fitted exponent ξ is written in the same color as the corresponding solid fitting line.

Fig. S6 Fitting of the *k*-dependent exponent ξ_1 by $D: \tau^{-\xi_1}$ (a) and ξ_2 by $D: (\tau/T)^{-\xi_2}$ for Jagla (b), as well as

 ξ_1 vs. k (c) and ξ_2 vs. k (d). In (a) and (b), the calculated data are represented by different symbols and the fitted exponent is written in the same color as the corresponding fitting line; ξ_{1s} , ξ_{2s} values correspond to solid lines and ξ_{1d} , ξ_{2d} values correspond to dotted lines. In (c) and (d), black circles represent ξ_{1s} , ξ_{2s} and red squares are ξ_{1d} , ξ_{2d} .

Fig. S7 (a) Effective hydrodynamic radius rescaled by the value at T = 140 K α / η vs. T for the Jagla model. The black line is the simulated result and the red one is the fitted result with $\tau_0 = 19$ ps. (b) Residence correlation time τ_s and coordination number n (inset) of the first solvation shell vs. T for the Jagla fluid model.

References

- 1 E. A. Jagla, J. Chem. Phys., 1999, 111, 8980-8986.
- 2 E. A. Jagla, Phys. Rev. E, 2001, 63, 061509.
- 3 E. A. Jagla, J. Phys.: Condens. Matter, 1999, 11, 10251-10258.
- 4 H. J. C. Berendsen, D. van der Spoel and R. van Drunen, Comput. Phys. Commun., 1995, 91, 43-56.
- 5 D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. Berendsen, J. Comput. Chem., 2005, 26, 1701-1718.
- 6 S. Nosé, J. Chem. Phys., 1984, 81, 511-519.
- 7 W. G. Hoover, Phys. Rev. A, 1985, 31, 1695-1697.
- 8 M. Parrinello and A. Rahman, J. Appl. Phys., 1981, 52, 7182-7190.
- 9 S. Nosé and M. L. Klein, Mol. Phys., 1983, 50, 1055-1076.