Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Electronic Supplementary Information (ESI)

Differences in the torsional anharmonicity between reactant and transition state: the case of 3-butenal + H abstraction reactions

Maiara Oliveira Passos, Igor Araujo Lins, Mateus Fernandes Venâncio, and Tiago Vinicius Alves*

Departamento de Físico-Química, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Salvador, Bahia, 40170-115, Brazil

*E-mail address:tiagova@ufba.br

Torsional Potential Energy Surface

The potential $V_{tor}(\phi_1, \phi_2)$ are obtained from a fit to Fourier series of the type

$$V_{\text{tor}}(\phi_{1},\phi_{2}) = V_{1}(\phi_{1}) + V_{2}(\phi_{1}) + \sum_{\substack{L_{1}=1\\ L_{2}=1}}^{L_{1,max}} \sum_{\substack{L_{2}=1\\ L_{2}=1}}^{L_{2,max}} c_{L_{1}L_{2}}\cos(L_{1}\phi_{1})\cos(L_{2}\phi_{2}) + \sum_{\substack{P_{1}=1\\ P_{1}=1}}^{P_{1,max}} \sum_{\substack{P_{2}=1\\ P_{2}=1}}^{P_{2,max}} d_{P_{1}P_{2}}\sin(P_{1}\phi_{1})\sin(P_{2}\phi_{2}) + \sum_{\substack{L_{1}'=1\\ L_{1}'=1}}^{L_{1'max}'} \sum_{\substack{L_{2}'=1\\ L_{2}'=1}}^{L_{2'}'} c_{L_{1}'L_{2}'}\cos(L_{1}'\phi_{1})\sin(L_{2}'\phi_{2}) + \sum_{\substack{P_{1}'=1\\ P_{1}'=1}}^{P_{1,max}'} \sum_{\substack{P_{2}'=1\\ P_{2}'=1}}^{P_{2'max}'} d_{P_{1}'P_{2}'}'\sin(P_{1}'\phi_{1})\cos(P_{2}'\phi_{2})$$
(1)

where $c_{L_1L_2}(L_1 = 1, ..., L_{1,max}, L_2 = 1, ..., L_{2,max})$, $d_{P_1P_2}(P_1 = 1, ..., P_{1,max}, P_2 = 1, ..., P_{2,max})$, $c'_{L'_1L'_2}(L'_1 = 1, ..., L'_{1,max}, L'_2 = 1, ..., L'_{2,max})$, and $d'_{P'_1P'_2}(P'_1 = 1, ..., P'_{1,max}, P'_2 = 1, ..., P'_{2,max})$ are fitting parameters. $L_{1,max}, L_{2,max}, L'_{1,max}, L'_{2,max}, P_{1,max}, P_{2,max}, P'_{1,max}$, and $P'_{2,max}$, indicate the largest number of each series.

The one-dimensional potentials are:

$$V_1(\phi_1) = a_0 + \sum_{M=1}^{M_{max}} a_M \cos(M\phi_1) + \sum_{M=1}^{M_{max}} a'_M \sin(M\phi_1)$$
(2)

and

$$V_2(\phi_2) = b_0 + \sum_{N=1}^{N_{max}} b_N \cos(N\phi_2) + \sum_{N=1}^{N_{max}} b'_N \sin(N\phi_2)$$
(3)

where, a_0 , b_0 , $a_M(M = 1, ..., M_{max})$, $a'_M(M = 1, ..., M_{max})$, $b_N(N = 1, ..., N_{max})$ and $b'_N(N = 1, ..., N_{max})$ are fitting parameters. M_{max} and N_{max} , are the largest number of each series.

Parameters	
a_0	+694.6103
a_1	-141.8636
a_2	-147.5198
a_3	+215.6993
a_4	-15.5629
a_5	+5.4467
a_6	+1.8822
a_7	+1.1580
a_8	+0.0799
a_9	-0.0744
a_{10}	+0.1226
b_1	+143.2052
b_2	+130.3129
b_3	-236.9447
b_4	+25.0537
b_5	-5.4749
b_6	+10.4460
b_7	-2.2289
b_8	+0.5164
b_9	-0.4289
b_{10}	-0.1409
c_{11}, d_{11}	-130.6986, $+7.3143$
c_{21}, d_{21}	+119.7630, $+1.6295$
c_{31}, d_{31}	-5.5331 , -15.3181
c_{41}, d_{41}	-6.7536, $+4.6546$
c_{51}, d_{51}	+1.7502, $+0.4648$
c_{61}, d_{61}	-0.2652 , $+0.9868$
c_{71}, d_{71}	+0.2579, $+0.0317$
c_{81}, d_{81}	+0.1167 , -0.1181
c_{91}, d_{91}	-0.1393 , -0.0700
c_{101}, d_{101}	+0.1656, $+0.1273$
c_{12}, d_{12}	+139.2229, -239.8053
c_{22}, d_{22}	$-64.6275\ ,\ +92.5732$
c_{32}, d_{32}	-16.6150, $+20.8889$

Table S1: Parameters (in cm^{-1}) used to fit by Fourier series the two-dimensional torsional potential for 3-butenal (including coupling parameters).

Parameters	
c_{42}, d_{42}	+18.9465, -16.9536
c_{52}, d_{52}	+1.2943, $+0.7800$
c_{62}, d_{62}	-0.6790, $+1.6510$
c_{72}, d_{72}	-0.1670 , $+0.3775$
c_{82}, d_{82}	-0.0905, $+0.0130$
c_{92}, d_{92}	-0.0219 , -0.0434
c_{102}, d_{102}	+0.0046 , $+0.1205$
c_{13}, d_{13}	+53.8969, -84.7810
c_{23}, d_{23}	+69.9925, -76.5627
c_{33}, d_{33}	-6.2132, $+0.7293$
c_{43}, d_{43}	+0.8661 , -2.0325
c_{53}, d_{53}	+6.2695, -8.0044
c_{63}, d_{63}	-2.4561, $+2.3742$
c_{73}, d_{73}	-0.1604, $+0.5842$
c_{83}, d_{83}	+0.0737, -0.1860
c_{93}, d_{93}	+0.0770 , -0.0758
c_{103}, d_{103}	-0.0534, $+0.0353$
c_{14}, d_{14}	+19.8210, -29.1254
c_{24}, d_{24}	+24.8769, -33.9313
c_{34}, d_{34}	+5.0801 , -0.7241
c_{44}, d_{44}	+9.3616, -7.6849
c_{54}, d_{54}	+1.0784, -1.6631
c_{64}, d_{64}	-1.1246, $+0.6648$
c_{74}, d_{74}	+0.2991, -0.1419
c_{84}, d_{84}	-0.0648 , -0.1403
c_{94}, d_{94}	+0.0881 , -0.0170
c_{104}, d_{104}	-0.0940, $+0.0048$
c_{15}, d_{15}	-0.2262, $+6.9837$
c_{25}, d_{25}	+17.8936 , -23.9126
c_{35}, d_{35}	+3.5013, -5.0361
c_{45}, d_{45}	+5.8253, -4.7867
c_{55}, d_{55}	-0.5286, $+0.6486$
c_{65}, d_{65}	-0.5474 , $+0.1106$
c_{75}, d_{75}	+0.2308, -0.3436
c_{85}, d_{85}	+0.1286 , -0.0706
c_{95}, d_{95}	-0.0438 , -0.1128

Table S1 – continued from previous page

Parameters	
c_{105}, d_{105}	+0.0026, $+0.0491$
c_{16}, d_{16}	-0.5205, $+3.0572$
c_{26}, d_{26}	-0.2176, $+1.8142$
c_{36}, d_{36}	+2.6233, -2.8892
c_{46}, d_{46}	+2.1820 , -2.1509
c_{56}, d_{56}	+0.1531, $+0.2181$
c_{66}, d_{66}	-0.6988 , $+0.4585$
c_{76}, d_{76}	+0.3140 , -0.4552
c_{86}, d_{86}	+0.1411 , -0.0219
c_{96}, d_{96}	-0.1183, $+0.0837$
c_{106}, d_{106}	+0.0701 , -0.0637
c_{17}, d_{17}	-1.1565, $+1.5560$
c_{27}, d_{27}	-1.0600, $+2.2239$
c_{37}, d_{37}	+0.2484 , -0.5455
c_{47}, d_{47}	-1.1343, $+0.4800$
c_{57}, d_{57}	+0.5101 , -0.5025
c_{67}, d_{67}	-0.3057, $+0.4877$
c_{77}, d_{77}	-0.1277 , -0.2668
c_{87}, d_{87}	+0.2452 , -0.0279
c_{97}, d_{97}	+0.0228 , $+0.1710$
c_{107}, d_{107}	-0.0315 , -0.1710
c_{18}, d_{18}	-0.4633 , -0.7449
c_{28}, d_{28}	-1.7875, $+2.4587$
c_{38}, d_{38}	-0.3650, $+0.8257$
c_{48}, d_{48}	-1.2907, $+0.9226$
c_{58}, d_{58}	+0.4285 , -0.6002
c_{68}, d_{68}	-0.2184 , $+0.3529$
c_{78}, d_{78}	-0.2392, $+0.0087$
c_{88}, d_{88}	+0.1955 , -0.1052
c_{98}, d_{98}	+0.0532, $+0.2466$
c_{108}, d_{108}	-0.1118 , -0.1581
c_{19}, d_{19}	-0.1742 , -0.3086
c_{29}, d_{29}	-0.6271 , -0.1534
c_{39}, d_{39}	-0.3123, $+0.6025$
c_{49}, d_{49}	-0.8753, $+1.1892$
c_{59}, d_{59}	+0.1227, -0.5343

Table S1 – continued from previous page

Parameters	
c_{69}, d_{69}	+0.0512, $+0.2118$
c_{79}, d_{79}	-0.2507, $+0.1073$
c_{89}, d_{89}	+0.0381, -0.0308
$c_{99},\!d_{99}$	+0.1269, -0.0874
c_{109}, d_{109}	-0.0564 , $+0.2127$
c_{110}, d_{110}	+0.2272, $+0.0364$
c_{210}, d_{210}	-0.4348 , -0.4999
c_{310}, d_{310}	+0.1891, $+0.3651$
c_{410}, d_{410}	-0.4932, $+0.3763$
c_{510}, d_{510}	+0.2019 , -0.1480
c_{610}, d_{610}	-0.1102 , $+0.0715$
c_{710}, d_{710}	-0.1283, $+0.1533$
c_{810}, d_{810}	+0.1155 , -0.0104
c_{910}, d_{910}	-0.1306 , -0.1294
c_{1010}, d_{1010}	+0.0256, $+0.1520$

Table S1 – continued from previous page

Parameters	
a_0	+717.4953
a_1	+2.4101
a_2	-103.8992
a_3	+191.8351
a_4	-12.7525
a_5	+0.7351
a_6	+0.8981
a_7	+0.6797
a_8	+0.0073
a_9	-0.0971
a_{10}	-0.0276
b_1	+134.8187
b_2	+153.8959
b_3	-238.7042
b_4	+24.7767
b_5	-7.5153
b_6	+10.5966
b_7	-2.1790
b_8	+0.7372
b_9	-0.3915
b_{10}	+0.1203
c_{11}, d_{11}	-27.6147, -16.8639
c_{21}, d_{21}	+148.9874 , -32.6210
c_{31}, d_{31}	+22.1186, -32.7313
$c_{41},\!d_{41}$	-6.6001 , -2.2626
c_{51}, d_{51}	-2.7652, $+3.4027$
c_{61}, d_{61}	-1.8957, $+3.3823$
c_{71}, d_{71}	+0.6746, $+0.8855$
c_{81}, d_{81}	+0.6689, -1.1073
c_{91}, d_{91}	-0.1442 , -0.3261
c_{101}, d_{101}	-0.2312 , $+0.1898$
c_{12}, d_{12}	+93.7319, -184.1258
c_{22}, d_{22}	-64.4824, $+102.1510$
c_{32}, d_{32}	+3.5303, -3.4981

Table S2: Parameters (in cm^{-1}) used to fit by Fourier series the two-dimensional torsional potential for CRC1 (including coupling parameters).

Parameters	
c_{42}, d_{42}	+25.8748, -28.3723
c_{52}, d_{52}	+4.0631 , -0.9857
c_{62}, d_{62}	-2.0206, $+3.7798$
c_{72}, d_{72}	-1.1903, $+1.1418$
c_{82}, d_{82}	-0.5046 , -0.0415
c_{92}, d_{92}	+0.3377, -0.1915
c_{102}, d_{102}	+0.0937, $+0.2207$
c_{13}, d_{13}	+45.2690, -79.9750
c_{23}, d_{23}	+51.3502 , -62.1129
c_{33}, d_{33}	-1.1373 , -6.0456
c_{43}, d_{43}	+8.8662, -9.6632
c_{53}, d_{53}	+6.7909, -6.2278
c_{63}, d_{63}	-3.7776, $+3.7194$
c_{73}, d_{73}	-2.2163, $+1.5045$
c_{83}, d_{83}	+0.2542 , -0.3790
c_{93}, d_{93}	+0.5194 , -0.4274
c_{103}, d_{103}	+0.1458 , -0.2768
c_{14}, d_{14}	+19.9658, -31.7138
c_{24}, d_{24}	+19.2432, -29.3673
c_{34}, d_{34}	+10.3343, -5.9933
c_{44}, d_{44}	+16.3851 , -14.0622
c_{54}, d_{54}	+5.3093, -5.9776
c_{64}, d_{64}	-1.3257, $+0.4786$
c_{74}, d_{74}	-0.8917, $+0.7787$
c_{84}, d_{84}	-0.3491 , $+0.6365$
c_{94}, d_{94}	+0.0346 , -0.0517
c_{104}, d_{104}	+0.0760 , -0.2901
c_{15}, d_{15}	-0.2802, $+3.3870$
c_{25}, d_{25}	+16.5609, -22.9662
c_{35}, d_{35}	+5.7691, -5.3038
c_{45}, d_{45}	+6.9822 , -6.2661
c_{55}, d_{55}	+2.3099, -3.0224
c_{65}, d_{65}	-0.0565 , -0.4039
c_{75}, d_{75}	-0.3929, $+0.6325$
c_{85}, d_{85}	-0.4595 , $+0.4075$
c_{95}, d_{95}	-0.1785 , -0.3041

Table S2 – continued from previous page

Parameters	
c_{105}, d_{105}	+0.1950 , -0.2559
c_{16}, d_{16}	-0.5301 , $+3.8837$
c_{26}, d_{26}	+0.0145, $+1.8950$
c_{36}, d_{36}	+2.1417, -2.1623
c_{46}, d_{46}	+0.9277 , -0.8527
c_{56}, d_{56}	-0.4120, $+0.4024$
c_{66}, d_{66}	-1.3125, $+1.5731$
c_{76}, d_{76}	-0.5324 , $+0.4419$
c_{86}, d_{86}	-0.3817, $+0.3130$
$c_{96},\!d_{96}$	-0.2805, $+0.0884$
c_{106}, d_{106}	+0.0746 , -0.0828
c_{17}, d_{17}	-0.6812 , $+2.2251$
c_{27}, d_{27}	-1.0944 , $+2.2414$
c_{37}, d_{37}	-0.9237, $+0.5502$
c_{47}, d_{47}	-2.9260, $+2.4408$
c_{57}, d_{57}	-1.1165, $+1.4203$
c_{67}, d_{67}	-1.5937, $+1.6342$
c_{77}, d_{77}	-0.9852, $+0.4038$
c_{87}, d_{87}	-0.0652, $+0.1230$
c_{97}, d_{97}	+0.1024, $+0.1829$
c_{107}, d_{107}	+0.0235 , -0.2609
c_{18}, d_{18}	+0.1230 , -0.5690
c_{28}, d_{28}	-1.9158, $+2.6315$
c_{38}, d_{38}	-0.6818 , $+1.1658$
c_{48}, d_{48}	-2.2363, $+2.1457$
c_{58}, d_{58}	-1.0315 , $+1.2432$
c_{68}, d_{68}	-1.5580, $+1.6167$
c_{78}, d_{78}	-0.9097, $+0.8465$
c_{88}, d_{88}	+0.0183, $+0.1455$
c_{98}, d_{98}	-0.1563 , $+0.1954$
c_{108}, d_{108}	+0.0397 , -0.1612
c_{19}, d_{19}	-0.0153 , -0.4678
c_{29}, d_{29}	-0.1388 , -0.3429
c_{39}, d_{39}	-0.0774 , $+0.7856$
c_{49}, d_{49}	-1.1711 , $+0.7466$
c_{59}, d_{59}	-0.5893, $+0.3654$

Table S2 – continued from previous page

Parameters	
c_{69}, d_{69}	-0.6287, $+0.6608$
c_{79}, d_{79}	-0.4155, $+0.5244$
c_{89}, d_{89}	-0.0574, $+0.0911$
c_{99}, d_{99}	+0.0768, $+0.2424$
c_{109}, d_{109}	-0.0189 , -0.2975
c_{110}, d_{110}	-0.1974, $+0.0841$
c_{210}, d_{210}	+0.0411 , -0.0292
c_{310}, d_{310}	+0.1450, $+0.1151$
c_{410}, d_{410}	-0.0852 , $+0.3715$
c_{510}, d_{510}	+0.1086, $+0.0398$
c_{610}, d_{610}	-0.1962, $+0.2349$
c_{710}, d_{710}	-0.0550 , $+0.0850$
c_{810}, d_{810}	-0.1627, $+0.0285$
c_{910}, d_{910}	+0.0248 , -0.0423
c_{1010}, d_{1010}	-0.0495, $+0.0963$

Table S2 – continued from previous page

Parameters	
a_0	+1617.9965
a_1	-58.0898
a_2	-557.3912
a_3	+118.8347
a_4	-20.4812
a_5	+11.0135
a_6	+6.4386
a_7	+0.5664
a_8	-0.6256
a_9	-0.0998
a_{10}	-0.1262
b_1	+105.4562
b_2	-306.9214
b_3	-136.6444
b_4	+28.2825
b_5	+9.7861
b_6	+6.3942
b_7	-2.9992
b_8	-1.1916
b_9	+0.2917
b_{10}	+0.2193
a'_1	+69.8061
a'_2	+474.3082
a'_3	+38.0493
a'_4	-53.0671
a_5'	-5.5665
a_6'	+2.1179
a'_7	+1.4477
a'_8	+0.7076
a'_9	-0.0819
a'_{10}	-0.1771
b'_1	+10.1995
b'_2	-514.3444
b'_{3}	+85.3679

Table S3: Parameters (in cm^{-1}) used to fit by Fourier series the two-dimensional torsional potential for CRC2 (including coupling parameters).

Continued on next page

Parameters	
b'_4	+32.7501
b_5'	-0.3031
b_6'	-7.2736
b'_7	+1.3281
b_8'	-0.0540
b_9'	+0.3731
b'_{10}	-0.0075
c_{11}, d_{11}	-96.7885, -26.2489
c_{21}, d_{21}	+110.3342, -5.6055
c_{31}, d_{31}	-7.0654 , -10.4786
$c_{41},\!d_{41}$	-2.4678, $+0.4573$
c_{51}, d_{51}	+3.0421, -1.0036
c_{61}, d_{61}	-0.9650, $+1.8910$
c_{71}, d_{71}	-0.2744, $+0.4301$
c_{81}, d_{81}	+0.2412 , -0.4816
c_{91}, d_{91}	+0.0966, -0.1173
c_{101}, d_{101}	-0.0137, $+0.1011$
c_{12}, d_{12}	+132.0684, -208.1351
c_{22}, d_{22}	-13.5489 , $+9.0599$
c_{32}, d_{32}	-7.8923, $+16.6189$
c_{42}, d_{42}	+20.9921, -5.3960
c_{52}, d_{52}	+0.6228, -2.6006
c_{62}, d_{62}	-1.2977 , -0.8933
c_{72}, d_{72}	-0.0170, $+0.2581$
c_{82}, d_{82}	-0.2283, $+0.1041$
c_{92}, d_{92}	+0.0792, -0.0399
c_{102}, d_{102}	+0.0850, $+0.1424$
c_{13}, d_{13}	+53.7537, -78.7624
c_{23}, d_{23}	+66.9632, -67.7519
c_{33}, d_{33}	+1.8885, -8.6361
c_{43}, d_{43}	-2.7112, $+1.2670$
c_{53}, d_{53}	+2.9892, -4.0100
c_{63}, d_{63}	-1.4856, $+2.1349$
c_{73}, d_{73}	+0.1704 , $+0.2554$
c_{83}, d_{83}	+0.4759, -0.5183
c_{93}, d_{93}	-0.1594, $+0.0315$

Table S3 – continued from previous page

Parameters	
c_{103}, d_{103}	+0.0111, $+0.1106$
c_{14}, d_{14}	+12.7021, -17.9038
c_{24}, d_{24}	+27.2463, -25.1241
c_{34}, d_{34}	+7.9232, -5.6487
c_{44}, d_{44}	+4.7092, -6.3377
c_{54}, d_{54}	-0.3505 , -0.2609
c_{64}, d_{64}	-0.4476 , $+0.2976$
c_{74}, d_{74}	+0.6668, -0.6017
c_{84}, d_{84}	+0.1435, $+0.1011$
c_{94}, d_{94}	-0.1121, $+0.0888$
c_{104}, d_{104}	+0.0003, -0.0028
c_{15}, d_{15}	-1.8036 , $+2.7684$
c_{25}, d_{25}	+12.0761, -17.4132
c_{35}, d_{35}	+1.7283, -2.0786
c_{45}, d_{45}	+6.6627, -5.1407
c_{55}, d_{55}	-0.1910 , $+0.6297$
c_{65}, d_{65}	-0.7939, $+0.6434$
c_{75}, d_{75}	+0.5074 , -0.5641
c_{85}, d_{85}	-0.0127 , -0.0522
c_{95}, d_{95}	-0.2165, $+0.0399$
c_{105}, d_{105}	+0.1158, $+0.0361$
c_{16}, d_{16}	-0.1837, $+3.1059$
c_{26}, d_{26}	+1.9883, -2.1579
c_{36}, d_{36}	+1.2643, -1.8779
c_{46}, d_{46}	+2.1736, -2.1107
c_{56}, d_{56}	+0.4464 , $+0.0262$
c_{66}, d_{66}	-0.6438, $+0.6233$
c_{76}, d_{76}	+0.3045 , -0.3266
c_{86}, d_{86}	-0.0038 , -0.1174
c_{96}, d_{96}	-0.1682, $+0.0420$
c_{106}, d_{106}	+0.1057, -0.0090
c_{17}, d_{17}	+0.2828, $+0.6296$
c_{27}, d_{27}	-0.6717, $+1.9227$
c_{37}, d_{37}	+0.3286, -0.3144
c_{47}, d_{47}	-0.7958, $+0.5396$
c_{57}, d_{57}	+0.6531, -0.4571

Table S3 – continued from previous page

Parameters	
c_{67}, d_{67}	-0.6297, $+0.3527$
c_{77}, d_{77}	-0.0178 , -0.0989
c_{87}, d_{87}	+0.1611 , -0.0709
c_{97}, d_{97}	-0.0892, $+0.1182$
c_{107}, d_{107}	+0.0184 , -0.1256
c_{18}, d_{18}	+0.1753, -0.4518
c_{28}, d_{28}	-1.5121, $+1.9807$
c_{38}, d_{38}	+0.1783, $+0.3114$
c_{48}, d_{48}	-1.3799, $+0.8516$
c_{58}, d_{58}	+0.5460 , -0.3764
c_{68}, d_{68}	-0.3898, $+0.2800$
c_{78}, d_{78}	-0.0177 , -0.0154
c_{88}, d_{88}	+0.2077 , -0.1127
c_{98}, d_{98}	-0.0340, $+0.1401$
c_{108}, d_{108}	-0.0490 , -0.0502
c_{19}, d_{19}	-0.2314 , -0.1313
c_{29}, d_{29}	-0.5189, $+0.3013$
c_{39}, d_{39}	-0.0495, $+0.4265$
c_{49}, d_{49}	-0.8036, $+0.4220$
c_{59}, d_{59}	+0.0359 , -0.2622
c_{69}, d_{69}	-0.1265, $+0.1280$
c_{79}, d_{79}	+0.0149 , $+0.0520$
c_{89}, d_{89}	+0.1820, -0.1788
$c_{99},\!d_{99}$	+0.0421 , $+0.1649$
c_{109}, d_{109}	-0.0845 , -0.0868
c_{110}, d_{110}	-0.2922, $+0.1018$
c_{210}, d_{210}	+0.0383, $+0.1191$
c_{310}, d_{310}	-0.1022, $+0.3268$
c_{410}, d_{410}	-0.1827 , -0.0440
c_{510}, d_{510}	-0.1387 , -0.0171
c_{610}, d_{610}	+0.0733, -0.1157
c_{710}, d_{710}	-0.0560, $+0.1543$
c_{810}, d_{810}	+0.2141 , -0.1747
c_{910}, d_{910}	-0.0415 , $+0.0741$
c_{1010}, d_{1010}	-0.0622 + 0.0102
c'_{11}, d'_{11}	-8.7497, $+2.6477$

Table S3 – continued from previous page

Parameters	
c'_{21}, d'_{21}	-9.5548 , -8.7925
c_{31}', d_{31}'	-2.2938 , -5.9322
c_{41}', d_{41}'	+2.2634, $+2.0010$
c_{51}', d_{51}'	+1.5851, $+0.6256$
c_{61}', d_{61}'	-0.4251 , -0.0887
c_{71}', d_{71}'	-0.1807 , -0.0776
c_{81}', d_{81}'	-0.0818 , $+0.0777$
c_{91}', d_{91}'	-0.0067 , -0.0264
c_{101}', d_{101}'	+0.0760, -0.0460
c_{12}', d_{12}'	-0.8022 , -25.4287
c_{22}', d_{22}'	+110.3040 , -67.8798
c_{32}', d_{32}'	+3.1431, $+3.1181$
c_{42}', d_{42}'	-13.4768, $+5.0009$
c_{52}', d_{52}'	-1.1279 , -0.6724
c_{62}', d_{62}'	+0.5911 , $+1.5567$
c_{72}', d_{72}'	+1.0146, $+0.3168$
c_{82}', d_{82}'	+0.1292, -0.5636
c_{92}', d_{92}'	-0.1655 , -0.1649
c_{102}', d_{102}'	+0.1060, $+0.0622$
c_{13}', d_{13}'	+1.4192, $+11.2411$
c_{23}', d_{23}'	+7.4479, $+16.9094$
c_{33}', d_{33}'	-0.3135, -3.7194
c_{43}', d_{43}'	+0.2338, -0.5262
c_{53}', d_{53}'	+0.6016 , $+0.4629$
c_{63}', d_{63}'	-0.9278, -1.3436
c_{73}', d_{73}'	+0.0503 , -0.0458
c_{83}', d_{83}'	-0.0241 , $+0.0734$
c_{93}', d_{93}'	-0.0643, $+0.0732$
c_{103}', d_{103}'	+0.1823, $+0.0679$
c_{14}', d_{14}'	-3.7443, -4.1941
c_{24}', d_{24}'	-4.3592, $+8.7777$
c_{34}', d_{34}'	-0.2663, $+0.7048$
c_{44}', d_{44}'	+0.0599, $+0.3569$
c_{54}', d_{54}'	-0.3440 , $+0.1233$
c_{64}', d_{64}'	-0.0277 , -0.8121
c_{74}', d_{74}'	+0.0370, -0.1189

Table S3 – continued from previous page

Parameters	
c'_{84}, d'_{84}	+0.0093, -0.0391
c_{94}', d_{94}'	+0.0002, $+0.1319$
c_{104}', d_{104}'	+0.0536, $+0.0900$
c_{15}', d_{15}'	-0.8451 , -0.9492
c_{25}', d_{25}'	-3.7579 , -2.7596
c_{35}', d_{35}'	-0.2966 , -0.6721
c_{45}', d_{45}'	+1.7160, $+0.8166$
c_{55}', d_{55}'	-0.2819 , -0.1968
c_{65}', d_{65}'	-0.0716 , $+0.3160$
c_{75}', d_{75}'	-0.1259 , -0.0113
c_{85}', d_{85}'	-0.0392 , -0.1733
c_{95}', d_{95}'	+0.1147, $+0.1281$
c_{105}', d_{105}'	+0.0279, $+0.0214$
c_{16}', d_{16}'	+0.9958 , $+0.8467$
c_{26}', d_{26}'	$+1.0404\ ,\ +0.0654$
c_{36}', d_{36}'	-0.4479 , -0.1885
c_{46}', d_{46}'	+0.5556, $+0.6645$
c_{56}', d_{56}'	+0.3034, -0.1926
c_{66}', d_{66}'	+0.0462 , -0.0198
c_{76}', d_{76}'	-0.1376 , -0.0367
c_{86}', d_{86}'	-0.1440 , -0.0648
c_{96}', d_{96}'	+0.0994, $+0.0542$
c_{106}', d_{106}'	+0.0048, $+0.0426$
c_{17}', d_{17}'	+0.6416, $+0.7240$
c_{27}', d_{27}'	+1.1282, $+0.6132$
c_{37}', d_{37}'	+0.3071, $+0.1096$
c_{47}', d_{47}'	-0.1572, $+0.1831$
c_{57}', d_{57}'	+0.0780, $+0.0979$
c_{67}', d_{67}'	+0.0602, -0.0013
c_{77}', d_{77}'	-0.0329 , -0.0727
c_{87}', d_{87}'	-0.0313 , -0.0194
c_{97}', d_{97}'	+0.0116, -0.0225
c_{107}', d_{107}'	+0.0166, $+0.0543$
c_{18}', d_{18}'	-0.0994 , -0.1135
c_{28}', d_{28}'	+0.0300, $+0.1814$
c_{38}', d_{38}'	+0.3045, -0.1671

Table S3 – continued from previous page

Table $55 - col$	ntinued from previous page
Parameters	
c_{48}', d_{48}'	-0.1005 , -0.2131
c_{58}', d_{58}'	-0.0726 , $+0.0795$
c_{68}', d_{68}'	-0.0419, $+0.0723$
c_{78}', d_{78}'	-0.0137 , -0.0854
c_{88}', d_{88}'	-0.0561, $+0.0020$
c_{98}', d_{98}'	+0.0763, $+0.0120$
c_{108}', d_{108}'	+0.0333, -0.0160
c_{19}', d_{19}'	-0.3343 , -0.2236
c_{29}', d_{29}'	-0.1727, $+0.1928$
c_{39}', d_{39}'	-0.0075 , -0.0489
c_{49}', d_{49}'	+0.0396, -0.0375
c_{59}', d_{59}'	-0.0757 , -0.0096
c_{69}', d_{69}'	-0.0263, $+0.0437$
c_{79}', d_{79}'	-0.0381 , -0.0669
$c_{89}^{\prime}, d_{89}^{\prime}$	-0.0111 , $+0.0126$
c_{99}', d_{99}'	+0.0392, $+0.0179$
c_{109}', d_{109}'	-0.0033 , -0.0655
c_{110}', d_{110}'	-0.2140 , -0.1697
c_{210}', d_{210}'	+0.0114 , $+0.2076$
c_{310}', d_{310}'	-0.0053 , -0.0468
c_{410}', d_{410}'	+0.0294 , -0.0078
c_{510}', d_{510}'	-0.0245 , -0.0285
c_{610}', d_{610}'	-0.0678 , $+0.0791$
c_{710}', d_{710}'	-0.0169 , -0.1104
$c_{810}^{\prime}, d_{810}^{\prime}$	+0.0537, $+0.0636$
c_{910}', d_{910}'	+0.0370 , -0.0468
c_{1010}', d_{1010}'	-0.0226 , -0.0056

Table S3 – continued from previous page

Parameters	
a_0	+525.9577
a_1	-216.4556
a_2	-140.1909
a_3	+209.8433
a_4	-15.7680
a_5	+5.6794
a_6	+1.3821
a_7	+0.7912
a_8	+0.1833
a_9	-0.0617
a_{10}	-0.0069
b_1	-129.1291
b_2	+81.2365
b_3	-197.1739
b_4	+26.2454
b_5	-5.1609
b_6	+9.3416
b_7	-2.6084
b_8	+0.5818
b_9	-1.0836
b_{10}	+0.2272
c_{11}, d_{11}	+80.9784 , -104.5749
c_{21}, d_{21}	$+82.0394\ ,\ +57.9061$
c_{31}, d_{31}	+1.7838 , -25.9564
c_{41}, d_{41}	-11.5362, $+7.8094$
c_{51}, d_{51}	+0.1847 , -0.2503
c_{61}, d_{61}	+0.4798 , -0.1966
c_{71}, d_{71}	-0.1505 , $+0.3154$
c_{81}, d_{81}	+0.0371 , -0.0501
c_{91}, d_{91}	+0.0789 , -0.0295
c_{101}, d_{101}	-0.0463 , -0.0254
c_{12}, d_{12}	+95.3199, -166.6894
c_{22}, d_{22}	-21.5595, $+52.2536$
c_{32}, d_{32}	-12.3422, $+10.1463$

Table S4: Parameters (in cm^{-1}) used to fit by Fourier series the two-dimensional torsional potential for CRC3 (including coupling parameters).

Parameters	
c_{42}, d_{42}	+8.7399, -11.9282
c_{52}, d_{52}	+1.7162 , -0.4338
c_{62}, d_{62}	-0.5763, $+1.0800$
c_{72}, d_{72}	-0.6300 , $+0.0985$
c_{82}, d_{82}	+0.1416, $+0.0989$
c_{92}, d_{92}	-0.0167 , $+0.1042$
c_{102}, d_{102}	-0.0104 , -0.0869
c_{13}, d_{13}	+60.1527 , -80.0550
c_{23}, d_{23}	+14.6980 , -12.6883
c_{33}, d_{33}	+0.1510 , -4.0827
c_{43}, d_{43}	-6.9385, $+4.9751$
c_{53}, d_{53}	+5.9567, -7.6951
c_{63}, d_{63}	-1.6595 , $+1.7562$
c_{73}, d_{73}	-0.5024 , $+0.7207$
c_{83}, d_{83}	+0.2174 , -0.0209
c_{93}, d_{93}	+0.0120, $+0.0290$
c_{103}, d_{103}	-0.0072 , -0.1817
c_{14}, d_{14}	+9.0860, -27.0984
c_{24}, d_{24}	+13.6538, -20.9596
c_{34}, d_{34}	+3.7953, $+2.0840$
c_{44}, d_{44}	+9.1703, -10.1018
c_{54}, d_{54}	-0.1758 , -0.9239
c_{64}, d_{64}	-0.4513, $+0.5014$
c_{74}, d_{74}	+0.0048 , -0.2417
c_{84}, d_{84}	+0.0990, $+0.1990$
c_{94}, d_{94}	+0.0178, $+0.3025$
c_{104}, d_{104}	-0.0465 , -0.2703
c_{15}, d_{15}	-0.9655, $+3.3446$
c_{25}, d_{25}	+3.6184, -5.7508
c_{35}, d_{35}	+0.1480, -0.4386
c_{45}, d_{45}	+1.9274, -1.4398
c_{55}, d_{55}	+1.2136, -1.2028
c_{65}, d_{65}	-0.7482, $+0.5515$
c_{75}, d_{75}	+0.0894 , $+0.0703$
c_{85}, d_{85}	+0.1122, -0.0238
c_{95}, d_{95}	-0.0972, $+0.0504$

Table S4 – continued from previous page

Parameters	
c_{105}, d_{105}	+0.0544 , -0.1247
c_{16}, d_{16}	-1.2120, $+2.8900$
c_{26}, d_{26}	+2.3225, -3.8564
c_{36}, d_{36}	+1.6827, -1.9103
c_{46}, d_{46}	+4.0459, -3.6351
c_{56}, d_{56}	-0.7616 , $+0.8648$
c_{66}, d_{66}	-0.1810 , $+0.4903$
c_{76}, d_{76}	+0.3833 , -0.3872
c_{86}, d_{86}	-0.2528, $+0.2071$
c_{96}, d_{96}	-0.1037, $+0.2141$
c_{106}, d_{106}	+0.0162 , -0.0917
c_{17}, d_{17}	+0.0945, $+2.1452$
c_{27}, d_{27}	-0.7903, $+1.0363$
c_{37}, d_{37}	-0.6912 , -0.2023
c_{47}, d_{47}	-0.4160, $+0.5015$
c_{57}, d_{57}	+0.7815 , -0.4901
c_{67}, d_{67}	-0.2781 , $+0.4262$
c_{77}, d_{77}	+0.1427, -0.2385
c_{87}, d_{87}	-0.1895, $+0.0984$
c_{97}, d_{97}	-0.1120 , -0.0709
c_{107}, d_{107}	+0.2154, $+0.0309$
c_{18}, d_{18}	+0.1827, -0.5053
c_{28}, d_{28}	-0.1557, $+0.3978$
c_{38}, d_{38}	+0.3920 , -0.6553
c_{48}, d_{48}	-0.1256, $+0.2796$
c_{58}, d_{58}	+0.2199, -0.1623
c_{68}, d_{68}	-0.5689, $+0.5499$
c_{78}, d_{78}	+0.3598, -0.0358
c_{88}, d_{88}	-0.2829, $+0.0617$
c_{98}, d_{98}	-0.3647, $+0.2162$
c_{108}, d_{108}	+0.2566, $+0.1441$
c_{19}, d_{19}	+0.3810, -0.1616
c_{29}, d_{29}	-0.5270, $+0.7200$
c_{39}, d_{39}	-0.0788, $+0.2280$
c_{49}, d_{49}	-0.6862, $+0.5153$
c_{59}, d_{59}	+0.3955, -0.1887

Table S4 – continued from previous page

Table $S4 - c$	ontinued from previous page
Parameters	
c_{69}, d_{69}	-0.1073 , +0.2228
c_{79}, d_{79}	-0.1456, $+0.0457$
c_{89}, d_{89}	-0.0463 , -0.0201
c_{99}, d_{99}	-0.0530, $+0.1083$
c_{109}, d_{109}	+0.0512 , $+0.0138$
c_{110}, d_{110}	+0.0190, -0.4244
c_{210}, d_{210}	+0.1009, $+0.0094$
c_{310}, d_{310}	+0.1167, $+0.0617$
c_{410}, d_{410}	-0.3073 , -0.0295
c_{510}, d_{510}	+0.2334, $+0.0340$
c_{610}, d_{610}	-0.2634 , $+0.1521$
c_{710}, d_{710}	-0.0140, $+0.0035$
c_{810}, d_{810}	-0.0004 , -0.1032
c_{910}, d_{910}	-0.1351, $+0.2768$
c_{1010}, d_{1010}	+0.0455, -0.0172

Parameters	
a_0	+638.4483
a_1	-107.0919
a_2	-169.7664
a_3	+213.8027
a_4	-14.8229
a_5	+5.4566
a_6	+1.1463
a_7	+0.9746
a_8	+0.0665
a_9	-0.1036
a_{10}	+0.0561
b_1	+88.5672
b_2	+76.5103
b_3	-225.1711
b_4	+19.2116
b_5	-4.3115
b_6	+8.7894
b_7	-1.6147
b_8	+0.6977
b_9	-1.0443
b_{10}	-0.0247
c_{11}, d_{11}	-94.7676 , -15.5823
c_{21}, d_{21}	+74.0644, $+26.3690$
c_{31}, d_{31}	-0.0446 , -22.5598
c_{41}, d_{41}	-6.0767, $+6.9698$
c_{51}, d_{51}	+1.6379, $+0.5029$
c_{61}, d_{61}	-0.8911 , $+1.1102$
c_{71}, d_{71}	-0.0546 , -0.2225
c_{81}, d_{81}	+0.1566 , -0.0524
c_{91}, d_{91}	-0.0900 , $+0.1018$
c_{101}, d_{101}	-0.0598 , -0.0141
c_{12}, d_{12}	+162.1790, -250.5826
c_{22}, d_{22}	-103.7707, $+135.9888$
c_{32}, d_{32}	-9.0966, $+10.1289$

Table S5: Parameters (in cm^{-1}) used to fit by Fourier series the two-dimensional torsional potential for CRC4 (including coupling parameters).

Parameters	
c_{42}, d_{42}	+14.6685, -13.5559
c_{52}, d_{52}	+0.3779, $+1.7521$
c_{62}, d_{62}	-0.5709, $+1.3760$
c_{72}, d_{72}	-0.3653, $+0.1583$
c_{82}, d_{82}	-0.0093, $+0.2807$
c_{92}, d_{92}	+0.0196 , $+0.0553$
c_{102}, d_{102}	-0.0855 , -0.0724
c_{13}, d_{13}	+50.4019 , -79.1064
c_{23}, d_{23}	+55.8316 , -55.5163
c_{33}, d_{33}	-0.7502 , -4.2287
c_{43}, d_{43}	-4.2918, $+2.9138$
c_{53}, d_{53}	+5.3310, -6.9805
c_{63}, d_{63}	-2.0159, $+2.1747$
c_{73}, d_{73}	-0.1983, $+0.4599$
c_{83}, d_{83}	+0.2048, -0.0600
c_{93}, d_{93}	-0.1272, $+0.1566$
c_{103}, d_{103}	-0.0287 , -0.2096
c_{14}, d_{14}	+15.4899, -27.0314
c_{24}, d_{24}	+18.1384, -23.2867
c_{34}, d_{34}	+6.6639, -2.1002
$c_{44},\!d_{44}$	+4.8463, -4.0463
c_{54}, d_{54}	+0.1002 , -0.9752
c_{64}, d_{64}	-0.4991, $+0.4809$
c_{74}, d_{74}	+0.1830, -0.0538
c_{84}, d_{84}	-0.0091, $+0.0003$
c_{94}, d_{94}	-0.0970, $+0.1372$
c_{104}, d_{104}	-0.0089 , -0.0903
c_{15}, d_{15}	-2.4055, $+7.1633$
c_{25}, d_{25}	+16.2691, -20.7769
c_{35}, d_{35}	+2.9743, -3.6922
c_{45}, d_{45}	+3.7028, -3.2313
c_{55}, d_{55}	-1.2904, $+1.5958$
c_{65}, d_{65}	-0.0304 , -0.1798
c_{75}, d_{75}	+0.1740 , -0.1576
c_{85}, d_{85}	+0.0698, -0.0527
c_{95}, d_{95}	-0.1519 , +0.1116

Table S5 – continued from previous page

Parameters	
c_{105}, d_{105}	+0.0602, -0.0963
c_{16}, d_{16}	-0.0324, $+2.3329$
c_{26}, d_{26}	-0.8330, $+1.5108$
c_{36}, d_{36}	+1.8103, -2.0809
c_{46}, d_{46}	+2.2642 , -2.0505
c_{56}, d_{56}	-0.6481 , $+1.1681$
c_{66}, d_{66}	-0.1945, $+0.3160$
c_{76}, d_{76}	+0.1605 , -0.3523
c_{86}, d_{86}	+0.0448 , -0.0095
c_{96}, d_{96}	-0.1889, $+0.1407$
c_{106}, d_{106}	+0.0918 , -0.0315
c_{17}, d_{17}	-0.4378, $+1.5103$
c_{27}, d_{27}	-0.9312, $+1.0898$
c_{37}, d_{37}	+0.3526 , -0.6055
c_{47}, d_{47}	-0.4300 , $+0.1502$
c_{57}, d_{57}	+0.1715 , -0.1332
c_{67}, d_{67}	-0.2655, $+0.5583$
c_{77}, d_{77}	+0.1211 , -0.3007
c_{87}, d_{87}	-0.0690 , $+0.0106$
c_{97}, d_{97}	+0.0306 , -0.0482
c_{107}, d_{107}	+0.0119, $+0.0338$
c_{18}, d_{18}	-0.0371 , -0.8312
c_{28}, d_{28}	-1.3876, $+2.0274$
c_{38}, d_{38}	-0.1390, $+0.2981$
c_{48}, d_{48}	-0.7224 , $+0.5411$
c_{58}, d_{58}	+0.2746 , -0.3134
c_{68}, d_{68}	-0.2851, $+0.3329$
c_{78}, d_{78}	+0.0312 , -0.0139
c_{88}, d_{88}	-0.0787, $+0.0006$
c_{98}, d_{98}	-0.0645 , $+0.0848$
c_{108}, d_{108}	+0.0177 , -0.0655
c_{19}, d_{19}	+0.3666 , -0.1965
c_{29}, d_{29}	-0.4858 , $+0.4568$
$c_{39},\!d_{39}$	+0.0300, -0.0158
$c_{49},\!d_{49}$	-0.7607, $+0.8032$
c_{59}, d_{59}	+0.2445, -0.2105

Table S5 – continued from previous page

Parameters	
c_{69}, d_{69}	-0.2378, $+0.0682$
c_{79}, d_{79}	+0.1332, $+0.1946$
c_{89}, d_{89}	-0.1997 , -0.0939
c_{99}, d_{99}	+0.1066 , -0.0114
c_{109}, d_{109}	+0.0128, $+0.0272$
c_{110}, d_{110}	+0.1683, -0.2022
c_{210}, d_{210}	-0.0200, $+0.0071$
c_{310}, d_{310}	-0.2707, $+0.4605$
c_{410}, d_{410}	-0.1151 , -0.1154
c_{510}, d_{510}	-0.2074 , $+0.0348$
c_{610}, d_{610}	+0.2529, -0.0033
c_{710}, d_{710}	-0.3012 , $+0.1312$
c_{810}, d_{810}	+0.2406 , -0.1277
c_{910}, d_{910}	-0.2161 , $+0.2246$
c_{1010}, d_{1010}	+0.1499, -0.1509

Table S5 – continued from previous page

Parameters	
a_0	+861.0770
a_1	-201.0337
a_2	-179.3936
a_3	+218.1258
a_4	-13.7300
a_5	+4.6728
a_6	+1.4225
a_7	+1.2853
a_8	-0.0020
a_9	+0.0321
a_{10}	+0.0695
b_1	+312.6199
b_2	+233.5583
b_3	-143.7110
b_4	+40.6440
b_5	-12.8162
b_6	+0.6016
b_7	-5.0871
b_8	+2.0162
b_9	+1.0893
b_{10}	-0.1145
c_{11}, d_{11}	-340.0809, $+195.0669$
c_{21}, d_{21}	+143.8937, -42.7099
c_{31}, d_{31}	+0.9619 , -33.1350
c_{41}, d_{41}	-7.8941, $+13.6312$
c_{51}, d_{51}	+1.8537, -1.2754
c_{61}, d_{61}	-0.2010 , -0.0003
c_{71}, d_{71}	+0.3385, $+0.0985$
c_{81}, d_{81}	-0.0152 , $+0.0092$
c_{91}, d_{91}	+0.0944 , -0.0025
c_{101}, d_{101}	+0.0871 , $+0.1723$
c_{12}, d_{12}	+20.1320 , -91.5249
c_{22}, d_{22}	-27.1694, $+23.6238$
c_{32}, d_{32}	-10.6070, $+5.6669$

Table S6: Parameters (in cm^{-1}) used to fit by Fourier series the two-dimensional torsional potential for CRC5 (including coupling parameters).

Parameters	
c_{42}, d_{42}	+14.2559, -7.6214
c_{52}, d_{52}	+2.6884, -0.9968
c_{62}, d_{62}	-0.1919 , $+0.6067$
c_{72}, d_{72}	-0.6674 , $+0.4281$
c_{82}, d_{82}	-0.1831 , $+0.1790$
c_{92}, d_{92}	+0.1793, -0.0393
c_{102}, d_{102}	-0.0558, $+0.1479$
c_{13}, d_{13}	-3.0589 , -6.4185
c_{23}, d_{23}	+119.8740, -137.9558
c_{33}, d_{33}	-5.2989 , -5.6293
c_{43}, d_{43}	-2.5503, $+3.7570$
c_{53}, d_{53}	+7.6660, -8.5054
c_{63}, d_{63}	-2.2382, $+2.2444$
c_{73}, d_{73}	-0.7955 , $+0.8202$
c_{83}, d_{83}	+0.1447, -0.1330
c_{93}, d_{93}	+0.0279, $+0.0403$
c_{103}, d_{103}	-0.0579 , $+0.1251$
c_{14}, d_{14}	+8.2406, -12.0184
c_{24}, d_{24}	+64.8583, -72.7239
c_{34}, d_{34}	+4.7681, -1.7684
c_{44}, d_{44}	+8.4133, -8.1271
c_{54}, d_{54}	-0.3341, $+0.0755$
c_{64}, d_{64}	-1.1344, $+1.4129$
c_{74}, d_{74}	+0.0566, -0.0835
c_{84}, d_{84}	-0.1588, $+0.0975$
c_{94}, d_{94}	-0.0453 , -0.0332
c_{104}, d_{104}	+0.0174, -0.0383
c_{15}, d_{15}	+3.0673, -0.5915
c_{25}, d_{25}	+39.2317, -36.3591
c_{35}, d_{35}	+4.5882, -3.4998
c_{45}, d_{45}	+7.9795, -9.7722
c_{55}, d_{55}	-4.9334, $+4.8910$
c_{65}, d_{65}	-0.9244 , $+1.1396$
c_{75}, d_{75}	+0.6124 , -0.6027
c_{85}, d_{85}	-0.2238, $+0.4430$
c_{95}, d_{95}	-0.0282 , -0.0974

Table S6 – continued from previous page

Parameters	
c_{105}, d_{105}	+0.0604, -0.0491
c_{16}, d_{16}	+2.9096, -5.8997
c_{26}, d_{26}	+3.3039, $+2.4060$
c_{36}, d_{36}	+4.7610, -2.5672
c_{46}, d_{46}	+5.7836, -6.4343
c_{56}, d_{56}	-5.5300, $+5.4871$
c_{66}, d_{66}	-1.1434, $+0.8375$
c_{76}, d_{76}	+0.7441, -0.9992
c_{86}, d_{86}	-0.1428, $+0.5755$
c_{96}, d_{96}	-0.0027 , -0.0574
c_{106}, d_{106}	+0.0760, -0.1491
c_{17}, d_{17}	-0.9141 , $+0.8517$
c_{27}, d_{27}	-5.0719, $+4.9792$
c_{37}, d_{37}	+1.0867, -1.3103
c_{47}, d_{47}	+2.0197, -1.3464
c_{57}, d_{57}	-4.0103, $+3.9324$
c_{67}, d_{67}	-0.6871 , $+0.4304$
c_{77}, d_{77}	+0.4269, -0.7503
c_{87}, d_{87}	-0.1080, $+0.1681$
c_{97}, d_{97}	+0.1907, $+0.0749$
c_{107}, d_{107}	-0.0943 , -0.1014
c_{18}, d_{18}	-1.5497, $+2.1188$
c_{28}, d_{28}	-4.8167, $+2.5343$
c_{38}, d_{38}	-0.9653, $+0.4067$
c_{48}, d_{48}	+0.9107, -0.0323
c_{58}, d_{58}	-2.0617, $+2.1738$
c_{68}, d_{68}	-0.1383, $+0.1485$
c_{78}, d_{78}	+0.2645 , -0.4627
c_{88}, d_{88}	-0.0643 , -0.1069
c_{98}, d_{98}	+0.1880, $+0.1428$
c_{108}, d_{108}	-0.0266 , -0.1551
c_{19}, d_{19}	-0.0419, $+2.0701$
c_{29}, d_{29}	-0.1975 , -0.7732
c_{39}, d_{39}	-1.2875, $+0.7481$
$c_{49},\!d_{49}$	+0.3061, -0.1178
c_{59}, d_{59}	-0.7518, $+0.8358$

Table S6 – continued from previous page

Parameters	
c_{69}, d_{69}	+0.2566, -0.0364
c_{79}, d_{79}	+0.2995, -0.0946
c_{89}, d_{89}	-0.2759 , -0.2151
c_{99}, d_{99}	+0.2701 , -0.1165
c_{109}, d_{109}	-0.0756, $+0.2570$
c_{110}, d_{110}	+0.5583 , -0.4201
c_{210}, d_{210}	+0.7728, -0.7385
c_{310}, d_{310}	+0.0334, $+0.8740$
c_{410}, d_{410}	+0.4958, -0.7593
c_{510}, d_{510}	-0.3394, $+0.0709$
c_{610}, d_{610}	+0.4100 , -0.0832
c_{710}, d_{710}	+0.1245, $+0.1577$
c_{810}, d_{810}	+0.0626 , -0.1298
c_{910}, d_{910}	-0.1324 , -0.2286
c_{1010}, d_{1010}	+0.1448, $+0.0818$

Table S6 – continued from previous page

Cartesian Coordinates				
Element	Х	Y	Ζ	
С	-0.971808	-0.067590	-1.033474	
\mathbf{C}	-0.756347	-0.115184	0.448793	
\mathbf{C}	0.672632	-0.198405	0.853125	
\mathbf{C}	1.227257	0.567807	1.778477	
Η	-2.020241	0.067986	-1.348889	
Η	-1.253633	0.746603	0.896043	
Η	-1.316235	-0.987693	0.802588	
Η	1.269602	-0.936971	0.336446	
Η	2.267820	0.464552	2.043343	
Η	0.661709	1.326682	2.300982	
0	-0.104207	-0.182934	-1.852647	
	Vibrat	ional Frequ	encies	
3206.33	3148.63	3113.64	3035.77	
2971.72	2902.73	1839.51	1722.52	
1446.87	1407.82	1395.91	1330.08	
1297.62	1222.84	1143.93	1034.51	
1005.18	968.07	952.11	868.15	
746.77	704.32	551.19	394.74	
227.47	147.24	81.98		

Table S7: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm $^{-1})$ for the 3B-T–A+

Cartesian Coordinates			
Element	Х	Υ	Z
С	-0.619104	0.050937	-1.016229
С	-0.512219	0.033218	0.483027
\mathbf{C}	0.919240	-0.009140	0.909682
\mathbf{C}	1.510125	-1.060302	1.457031
Η	-0.155232	-0.809417	-1.527387
Н	-1.023180	0.912076	0.868752
Η	-1.026374	-0.859841	0.840936
Н	1.495400	0.889172	0.728064
Н	2.553221	-1.038956	1.731389
Н	0.968121	-1.973747	1.657705
Ο	-1.151021	0.920712	-1.646476
	Vibrat	ional Freque	encies
3207.13	3130.57	3113.70	3083.05
3008.87	2907.09	1837.96	1710.22
1441.68	1423.64	1391.67	1305.50
1270.79	1223.61	1131.43	1067.12
1021.89	959.39	951.59	944.04
804.77	644.62	494.10	385.99
304.92	84.60	59.29	

Table S8: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in $\rm cm^{-1})$ for the 3B-G+A–

Cartesian Coordinates			
Element	Х	Υ	Z
С	-0.580138	-0.311846	-1.062196
\mathbf{C}	-0.441067	-0.336481	0.431896
\mathbf{C}	0.987233	-0.359759	0.863667
\mathbf{C}	1.557916	0.577370	1.604102
Η	0.082489	-1.000893	-1.614054
Η	-0.980964	0.509761	0.846928
Η	-0.938725	-1.250558	0.770423
Η	1.578145	-1.205371	0.532918
Η	2.596492	0.513508	1.888645
Η	1.003401	1.436617	1.953044
Ο	-1.353825	0.385956	-1.654388
	Vibrat	ional Frequ	encies
3209.44	3123.13	3113.25	3087.21
2980.51	2897.92	1840.57	1717.14
1441.40	1418.05	1403.77	1309.43
1265.23	1209.87	1148.21	1052.32
1020.91	996.53	956.62	928.11
750.32	621.24	504.26	409.69
264.63	107.23	60.69	

Table S9: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in $\rm cm^{-1})$ for the 3B-G+A+

Cartesian Coordinates			
Element	Х	Υ	Ζ
С	-0.718304	-0.229452	-0.754833
С	-0.538122	-0.223987	0.731130
\mathbf{C}	0.896707	-0.272310	1.152386
\mathbf{C}	1.920216	0.115778	0.405875
Н	-0.187689	-1.036552	-1.287577
Н	-1.048271	0.644049	1.145246
Н	-1.053366	-1.108538	1.113865
Н	1.086455	-0.645833	2.149589
Η	2.931704	0.061546	0.776431
Η	1.790855	0.510084	-0.592469
Ο	-1.392518	0.556879	-1.359535
	Vibrat	ional Freque	encies
3205.61	3134.15	3113.89	3061.56
2994.01	2910.22	1838.39	1838.39
1429.74	1423.57	1397.39	1319.68
1305.97	1195.49	1100.26	1100.26
1017.45	989.09	955.41	937.49
767.03	579.79	519.54	452.86
230.43	115.84	61.46	

Table S10: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the 3B-G+C+

Cartesian Coordinates				
Element	Х	Υ	Ζ	
С	-1.123916	0.054056	-0.685193	
\mathbf{C}	-0.790779	0.010004	0.770919	
\mathbf{C}	0.630163	-0.049037	1.220830	
\mathbf{C}	1.726878	-0.070141	0.477066	
Η	-2.209232	0.095960	-0.885759	
Н	-1.288826	0.876366	1.218076	
Η	-1.347956	-0.839132	1.179702	
Η	0.738341	-0.076920	2.298354	
Η	2.693854	-0.114159	0.954808	
Η	1.694345	-0.044910	-0.598780	
О	-0.349541	0.047829	-1.600663	
	Vibrat	ional Freque	encies	
3233.63	3131.89	3109.42	2996.57	
2972.39	2886.31	1843.17	1714.37	
1434.17	1407.96	1395.97	1389.30	
1317.86	1224.87	1069.88	1044.40	
1026.50	992.93	980.96	824.29	
758.19	746.30	513.14	391.36	
238.05	125.54	75.88		

Table S11: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in $\rm cm^{-1})$ for the 3B-TC

Cartesian Coordinates			
Element	Х	Y	Z
С	-0.728374	0.230536	-1.112923
\mathbf{C}	-0.393404	-0.767770	-0.045615
\mathbf{C}	0.769337	-0.382259	0.798921
\mathbf{C}	0.741040	-0.347760	2.121249
Н	-1.785230	-0.066037	-1.724153
Н	-1.293369	-0.937938	0.544953
Н	-0.210737	-1.704896	-0.580178
Н	1.672979	-0.111799	0.270415
Н	1.611067	-0.066138	2.693287
Н	-0.151436	-0.598764	2.676904
Ο	-0.112795	1.192493	-1.425830
Н	-2.680132	-0.351181	-2.227732
	Vibrat	ional Frequ	encies
-1340.85	3208.13	3146.82	3114.87
3050.96	2986.23	1902.33	1718.66
1440.91	1402.01	1369.58	1327.41
1295.70	1226.53	1222.51	1152.99
1057.77	1009.00	960.14	957.28
864.37	801.07	704.48	546.90
392.38	314.60	286.00	187.90
100.57	70.03		

Table S12: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm $^{-1})$ for the TS1-T–A+

Cartesian Coordinates			
Element	Х	Y	Z
С	-0.363376	0.271444	-1.132147
\mathbf{C}	-0.119090	-0.725955	-0.036350
\mathbf{C}	1.018746	-0.314713	0.838218
С	0.906071	-0.095461	2.138314
Н	0.694895	0.599778	-1.734023
Н	-1.040333	-0.864327	0.524234
Н	0.122254	-1.665688	-0.540273
Н	1.978696	-0.192932	0.353585
Н	1.757700	0.196243	2.732434
Н	-0.038708	-0.204324	2.651216
Ο	-1.401857	0.729913	-1.467056
Н	1.600156	0.842659	-2.231916
	Vibrat	ional Freque	encies
-1359.70	3212.49	3137.73	3118.56
3078.62	2990.01	1902.85	1717.74
1438.95	1414.57	1367.62	1367.62
1271.15	1259.27	1206.97	1135.56
1079.06	1015.53	973.62	960.48
920.22	824.20	624.26	495.27
420.50	361.59	283.48	198.54
91.43	52.27		

Table S13: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in $\rm cm^{-1})$ for the TS1-G+A+
Cartesian Coordinates			
Element	Х	Y	Z
С	-0.635274	0.393826	-0.906304
\mathbf{C}	-0.406224	-0.635775	0.166731
\mathbf{C}	0.739036	-0.216782	1.032081
\mathbf{C}	1.920599	-0.813300	1.043919
Н	0.300531	0.415581	-1.759967
Н	-1.326111	-0.737937	0.739265
Н	-0.176255	-1.580087	-0.323885
Н	0.564736	0.642801	1.665553
Н	2.717348	-0.463966	1.681537
Н	2.128607	-1.671303	0.420985
Ο	-1.547049	1.143088	-1.000043
Н	1.077044	0.399141	-2.464707
	Vibrat	ional Freque	encies
-1397.89	3212.65	3138.36	3118.73
3083.65	3017.61	1901.18	1710.46
1440.83	1422.09	1356.40	1305.60
1279.97	1262.80	1202.95	1138.75
1063.44	1019.15	964.38	955.83
939.87	857.36	644.68	488.14
401.92	385.36	275.13	206.50
76.39	48.09		

Table S14: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the TS1-G+A-

Cartesian Coordinates			
Element	Х	Y	Z
С	-0.494709	0.050165	-0.910703
\mathbf{C}	-0.224812	-0.923426	0.194201
\mathbf{C}	0.905785	-0.505914	1.079520
\mathbf{C}	1.402308	0.718864	1.156125
Н	0.525571	0.279720	-1.618738
Н	-1.143278	-1.077900	0.759856
Н	0.023886	-1.871639	-0.287485
Н	1.322776	-1.287241	1.700022
Н	2.216887	0.946843	1.824953
Н	1.021321	1.535604	0.559306
Ο	-1.528004	0.561020	-1.184204
Н	1.368517	0.433031	-2.231917
	Vibrat	ional Freque	encies
-1395.04	3209.20	3138.28	3116.57
3053.65	2996.85	1901.22	1711.89
1427.02	1419.33	1358.52	1310.14
1302.12	1278.83	1184.78	1112.94
1040.62	1016.29	986.14	957.34
937.68	819.00	577.20	534.70
459.92	332.81	276.70	177.08
113.76	50.08		

Table S15: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm $^{-1})$ for the TS1-G+C+

Cartesian Coordinates			
Element	Х	Y	Z
С	-0.866491	-0.024835	-0.896295
\mathbf{C}	-0.483457	-0.940110	0.217828
\mathbf{C}	0.643244	-0.575846	1.125978
\mathbf{C}	1.404122	0.507264	1.090441
Н	-1.827448	-0.499126	-1.544047
Н	-1.400977	-1.102728	0.790482
Н	-0.299656	-1.910602	-0.251835
Н	0.828951	-1.315360	1.895373
Н	2.188488	0.634688	1.820444
Н	1.275809	1.282349	0.354119
Ο	-0.404322	1.018322	-1.216479
Н	-2.652305	-0.944690	-2.070260
	Vibrat	ional Frequ	encies
-1301.59	3250.86	3143.64	3113.35
3012.54	2984.64	1904.00	1720.90
1437.69	1400.55	1390.85	1365.79
1315.52	1234.83	1229.75	1099.95
1066.13	1021.80	977.24	973.94
828.14	821.54	732.20	528.69
400.67	303.22	293.45	233.29
98.98	62.15		

Table S16: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in $\rm cm^{-1})$ for the TS1-TC

Cartesian Coordinates			
Element	Х	Y	Z
С	-0.865151	0.742642	-0.858384
С	-0.680918	-0.358828	0.120844
\mathbf{C}	0.664501	-0.509176	0.689518
\mathbf{C}	1.183382	-1.673264	1.061072
Н	-1.821101	0.733657	-1.405331
Н	-1.448560	-0.034375	1.006935
Н	-1.134669	-1.287131	-0.218447
Н	1.233111	0.403152	0.800703
Н	2.173995	-1.735484	1.482959
Н	0.637909	-2.599799	0.950664
Ο	-0.067410	1.622539	-1.039745
Η	-2.164486	0.185047	1.821814
	Vibrat	ional Freque	encies
-1391.00	3211.00	3156.69	3116.39
3070.60	2925.00	1815.87	1697.51
1447.72	1401.61	1374.71	1338.42
1298.57	1274.46	1197.47	1141.80
1041.69	1013.62	987.78	951.03
880.83	791.12	723.41	612.83
405.05	314.76	286.34	223.32
138.52	100.20		

Table S17: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in $\rm cm^{-1})$ for the TS2-T+A–

Cartesian Coordinates			
Element	Х	Y	Z
С	-0.563781	0.933543	-0.660063
\mathbf{C}	-0.354570	-0.181507	0.297916
\mathbf{C}	1.004388	-0.313696	0.843890
\mathbf{C}	1.613927	-1.473159	1.060299
Н	0.069189	1.823058	-0.501958
Н	-1.089850	0.116903	1.215072
Н	-0.789405	-1.105785	-0.069424
Н	1.517920	0.607820	1.090542
Н	2.609169	-1.515022	1.473557
Н	1.136603	-2.413823	0.827237
О	-1.379778	0.914952	-1.540490
Н	-1.796729	0.287320	2.052831
	Vibrat	ional Frequ	encies
-1380.62	3213.92	3124.55	3115.84
3095.53	2903.42	1821.11	1696.31
1443.02	1443.02	1388.26	1312.92
1285.21	1259.06	1190.54	1157.08
1058.08	1033.63	1003.76	950.50
935.69	795.95	634.70	521.00
451.11	296.43	289.92	230.94
133.30	83.37		

Table S18: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the TS2-C–A–

Cartesian Coordinates			
Element	Х	Y	Z
С	-0.573286	0.506376	-0.751195
\mathbf{C}	-0.354592	-0.598250	0.224052
\mathbf{C}	1.015876	-0.748360	0.753940
\mathbf{C}	1.711486	0.231958	1.319722
Н	0.143950	1.340794	-0.695967
Н	-1.088553	-0.297539	1.145580
Н	-0.806592	-1.514853	-0.139285
Η	1.464593	-1.728278	0.666487
Н	2.716970	0.071388	1.674714
Н	1.298556	1.221376	1.458187
Ο	-1.474459	0.519124	-1.543823
Н	-1.754337	-0.089120	1.977733
	Vibrat	ional Frequ	encies
-1402.56	3211.50	3140.58	3117.40
3103.40	2927.26	1815.91	1684.52
1427.99	1391.49	1370.14	1323.98
1302.66	1281.46	1166.90	1117.61
1044.56	1006.87	983.17	970.08
948.61	789.27	639.00	564.10
436.19	318.44	297.22	207.13
102.10	69.35		

Table S19: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in $\rm cm^{-1})$ for the TS2-C–G+

Cartesian Coordinates			
Element	Х	Y	Z
С	-0.987870	0.319331	-0.801289
\mathbf{C}	-0.706756	-0.752927	0.187327
\mathbf{C}	0.632999	-0.931605	0.772989
С	1.599259	-0.022613	0.858722
Η	-1.961766	0.214603	-1.307853
Η	-1.484311	-0.478537	1.079890
Н	-1.145505	-1.688452	-0.153987
Η	0.809794	-1.913584	1.192086
Η	2.537808	-0.280460	1.324774
Η	1.489421	0.972689	0.464238
Ο	-0.279839	1.257729	-1.046841
Η	-2.205678	-0.262864	1.896802
	Vibrat	ional Freque	encies
-1390.14	3244.11	3140.04	3122.04
3059.10	2904.99	1822.08	1690.50
1437.29	1404.48	1399.86	1372.74
1323.57	1276.11	1182.61	1087.90
1041.52	1022.43	1005.30	974.49
846.54	808.94	745.90	608.01
397.22	324.28	286.46	237.85
128.21	72.28		

Table S20: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the TS2-T+C+

Cartesian Coordinates			
Element	Х	Y	Z
С	-0.696531	0.586860	-0.533167
\mathbf{C}	-0.443519	-0.515631	0.421667
\mathbf{C}	0.911459	-0.648583	0.990254
\mathbf{C}	1.993042	0.006035	0.583948
Н	-0.192878	1.540581	-0.310773
Н	-1.185413	-0.246850	1.366790
Н	-0.876547	-1.449112	0.072319
Н	1.005202	-1.354717	1.804785
Н	2.947092	-0.156386	1.059790
Н	1.974440	0.706646	-0.237331
Ο	-1.440318	0.494929	-1.473425
Н	-1.822026	-0.092446	2.212590
	Vibrat	ional Frequ	encies
-1469.84	3214.52	3133.27	3122.80
3079.87	2928.23	1812.45	1693.57
1425.82	1410.94	1343.50	1322.38
1307.95	1274.36	1181.44	1101.33
1047.14	1019.58	996.41	964.09
949.06	823.34	609.90	553.17
461.92	307.88	292.64	213.98
105.67	84.25		

Table S21: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in $\rm cm^{-1})$ for the TS2-G–C–

Cartesian Coordinates			
Element	Х	Υ	Ζ
С	-1.291854	0.252873	-0.380811
\mathbf{C}	-0.405608	-0.957985	-0.324532
\mathbf{C}	0.970868	-0.784340	0.168771
\mathbf{C}	1.693708	0.218849	0.608016
Н	-2.306616	0.041786	-0.760890
Н	-0.934451	-1.703111	0.277065
Н	-0.398033	-1.385265	-1.331597
Н	1.659328	-2.005828	0.156996
Н	2.717242	0.062080	0.918344
Н	1.289692	1.219837	0.671069
Ο	-0.986431	1.364901	-0.059254
Н	2.112950	-2.762603	0.158731
	Vibrat	ional Freque	encies
-1182.44	3195.66	3105.41	3010.20
2980.53	2893.72	1895.03	1840.64
1720.28	1418.65	1401.13	1388.44
1333.02	1216.46	1142.50	1035.32
1027.12	990.00	976.77	943.64
836.27	729.71	727.52	727.52
374.69	309.22	278.28	226.80
120.50	71.16		

Table S22: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in $\rm cm^{-1})$ for the TS3-TC

Cartesian Coordinates			
Element	Х	Y	Z
С	-1.075062	-0.467843	0.330753
С	-0.156285	0.254870	-0.620143
\mathbf{C}	1.213456	0.386423	-0.086811
\mathbf{C}	1.897089	1.407460	0.375462
Н	-1.008479	-0.148284	1.383482
Н	-0.177315	-0.263099	-1.576038
Н	-0.578194	1.254905	-0.768863
Н	1.921780	-0.843427	-0.046574
Н	2.905247	1.291573	0.745577
Н	1.477351	2.407551	0.393675
О	-1.845906	-1.319296	-0.006866
Н	2.380175	-1.584673	-0.013490
	Vibrat	ional Freque	encies
-1151.69	3175.66	3076.39	3073.85
2965.38	2920.13	1965.02	1841.73
1709.78	1415.80	1400.32	1392.13
1263.65	1195.43	1116.62	1079.53
1056.37	983.10	954.36	934.15
928.97	749.68	629.89	480.52
394.64	334.02	266.21	197.27
67.76	56.51		

Table S23: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the TS3-G+A-

Cartesian Coordinates			
Element	Х	Y	Z
С	-0.575110	-0.596105	-0.945370
С	-0.513668	-0.117115	0.480015
\mathbf{C}	0.871946	0.026495	0.966934
\mathbf{C}	1.578596	1.060568	1.358558
Н	0.149836	-1.379657	-1.218173
Н	-1.068270	0.817776	0.559250
Н	-1.038511	-0.863423	1.083316
Н	1.569726	-1.205999	1.028485
Н	2.602505	0.954393	1.685607
Н	1.156665	2.059367	1.370803
Ο	-1.360821	-0.181124	-1.748294
Η	2.010957	-1.959170	1.089059
	Vibrat	ional Freque	encies
-1159.91	3177.58	3079.68	3049.96
2981.91	2922.37	1944.79	1842.06
1713.70	1415.25	1401.37	1395.60
1262.46	1182.26	1124.03	1092.54
1045.77	996.56	981.15	925.59
910.33	736.63	613.40	494.91
400.16	327.36	264.13	196.10
85.11	55.10		

Table S24: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the TS3-G+A+

Cartesian Coordinates			
Element	Х	Y	Z
С	-0.812947	0.442779	-0.666863
С	-0.286527	-0.874222	-0.169596
С	1.101987	-0.738192	0.323154
\mathbf{C}	1.801563	0.284283	0.759524
Н	-0.229346	0.902376	-1.480836
Н	-0.947308	-1.254648	0.606414
Н	-0.306821	-1.581140	-1.002369
Н	1.817182	-1.951513	0.306704
Н	2.826785	0.164907	1.078153
Н	1.380497	1.281363	0.829305
Ο	-1.783686	0.987397	-0.224139
Η	2.286565	-2.690309	0.288192
	Vibrat	ional Freque	encies
-1156.36	3173.79	3077.80	3072.06
2996.16	2920.38	1943.42	1837.05
1705.01	1422.76	1403.73	1393.65
1279.08	1184.49	1125.04	1064.41
1041.75	988.20	976.15	925.86
917.15	786.41	593.26	479.66
451.30	311.39	267.03	209.81
74.68	46.26		

Table S25: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the TS3-G+C+

Cartesian Coordinates			
Element	Х	Y	Z
С	-0.977981	-0.487921	-0.937657
\mathbf{C}	-0.838549	0.033212	0.464887
\mathbf{C}	0.551846	0.191054	0.920083
\mathbf{C}	1.238928	1.228358	1.334079
Н	-2.019498	-0.630959	-1.271106
Н	-1.378755	0.984593	0.517473
Н	-1.391057	-0.650702	1.114829
Н	1.286322	-1.033603	0.919075
Н	2.271550	1.137837	1.637517
Н	0.796750	2.217780	1.381541
Ο	-0.063568	-0.740203	-1.667039
Н	1.750231	-1.763945	0.947055
	Vibrat	ional Freque	encies
-1122.00	3174.73	3074.10	3013.28
2966.73	2904.57	2025.27	1846.14
1724.16	1419.94	1394.67	1391.14
1313.31	1202.06	1101.43	1076.22
1010.08	947.83	944.43	920.89
852.91	742.81	691.85	572.38
347.74	320.44	258.18	155.34
141.18	61.70		

Table S26: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the TS3-T+A+

Cartesian Coordinates			
Element	Х	Y	Z
С	-0.993113	-0.670373	-0.877480
\mathbf{C}	-0.834752	0.213104	0.323090
\mathbf{C}	0.577930	0.338863	0.793120
\mathbf{C}	1.142244	1.470909	1.139997
Н	-2.013366	-0.712117	-1.294457
Н	-1.280243	1.182823	0.101198
Н	-1.463582	-0.224425	1.105449
Н	1.147692	-0.581245	0.834040
Н	2.535940	1.369040	1.575872
Н	0.765510	2.482342	1.154708
Ο	-0.110378	-1.315464	-1.367883
Η	3.342103	1.256921	1.816225
	Vibrat	ional Freque	encies
-1012.42	3175.52	3125.28	3045.31
2977.62	2904.31	2218.84	1839.55
1672.16	1412.08	1392.87	1334.57
1266.19	1203.37	1101.77	1090.27
1017.14	939.25	932.23	920.24
865.68	748.54	701.18	162.46
406.55	266.33	223.93	
137.07	73.31		

Table S27: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm $^{-1})$ for the TS4-T–A+

Cartesian Coordinates			
Element	Х	Y	Z
С	-1.081887	-0.519726	0.342427
\mathbf{C}	-0.246320	0.235044	-0.653589
\mathbf{C}	1.162668	0.378319	-0.154038
\mathbf{C}	1.697372	1.504820	0.256111
Н	-1.141580	-0.063390	1.344490
Н	-0.277593	-0.297550	-1.600907
Н	-0.692439	1.220613	-0.786468
Н	1.751905	-0.530986	-0.122096
Н	3.080954	1.411326	0.720414
Н	1.298009	2.506510	0.303360
Ο	-1.647136	-1.549008	0.104081
Н	3.882699	1.304807	0.978943
	Vibrat	ional Freque	encies
-1020.83	3176.42	3112.04	3086.48
3015.44	2911.26	2208.93	1838.55
1658.82	1434.52	1391.80	1286.81
1258.55	1199.32	1097.91	1088.12
1062.58	953.62	929.90	923.61
919.07	809.18	699.24	496.25
396.90	336.93	225.07	179.17
80.96	55.40		

Table S28: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the TS4-G+A-

	Carte	sian Coordi	nates
Element	Х	Y	Z
С	-0.581261	-0.692841	-0.941534
\mathbf{C}	-0.543590	-0.164313	0.462647
\mathbf{C}	0.861170	-0.029908	0.969756
\mathbf{C}	1.405055	1.101173	1.351937
Н	0.085741	-1.547291	-1.148004
Н	-1.086718	0.774846	0.498363
Н	-1.077816	-0.888078	1.085165
Н	1.451029	-0.939455	1.012193
Н	2.790493	1.004100	1.809872
Н	1.009011	2.104083	1.392225
О	-1.282546	-0.248843	-1.805520
Н	3.593064	0.891730	2.063109
	Vibrat	ional Frequ	encies
-1016.93	3181.58	3102.44	3091.78
2986.10	2901.30	2212.55	1840.45
1668.42	1425.01	1402.40	1296.49
1249.16	1189.05	1109.23	1089.73
1043.91	995.99	933.47	920.82
902.60	752.25	681.15	511.59
408.12	315.60	222.49	171.05
103.10	57.58		

Table S29: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the TS4-G+A+

Cartesian Coordinates			
Element	Х	Y	Z
С	-1.297857	0.194263	-0.412812
\mathbf{C}	-0.413948	-1.006908	-0.340678
\mathbf{C}	0.982487	-0.851577	0.174738
\mathbf{C}	1.576785	0.240862	0.594783
Н	-2.307435	-0.018361	-0.805057
Н	-0.950339	-1.752353	0.254174
Н	-0.394694	-1.439535	-1.345525
Н	1.548891	-1.777296	0.190455
Н	2.943774	0.027980	1.027969
Н	1.246890	1.261036	0.679686
Ο	-1.003147	1.311175	-0.092042
Н	3.742930	-0.163061	1.268193
	Vibrat	ional Frequ	encies
-1052.97	3237.12	3087.21	3005.77
2977.52	2893.85	2142.48	1842.51
1671.14	1410.65	1396.88	1377.05
1275.92	1216.60	1118.07	1036.77
1009.31	969.01	951.06	932.86
832.99	773.99	757.73	587.41
421.66	257.77	219.73	214.35
122.59	88.34		

Table S30: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in $\rm cm^{-1})$ for the TS4-TC

Cartesian Coordinates			
Element	Х	Y	Z
С	-0.834697	0.390366	-0.641406
С	-0.244156	-0.903804	-0.174575
\mathbf{C}	1.166931	-0.762306	0.320843
\mathbf{C}	1.716350	0.359829	0.724795
Н	-0.217280	0.956036	-1.359246
Н	-0.889439	-1.334083	0.588788
Н	-0.251318	-1.587203	-1.027337
Н	1.755687	-1.671606	0.348611
Н	3.100247	0.237793	1.179781
Н	1.335064	1.366765	0.799733
Ο	-1.903942	0.808472	-0.296058
Н	3.898959	0.106907	1.433831
	Vibrat	ional Frequ	encies
-1009.83	3178.11	3110.85	3067.84
2994.64	2909.55	2222.40	1840.98
1659.77	1421.32	1396.12	1310.84
1262.31	1192.70	1092.77	1073.14
1036.98	972.84	931.12	917.38
910.13	767.37	643.12	537.01
457.58	277.26	215.74	189.61
107.22	59.89		

Table S31: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the TS4-G+C+

Cartesian Coordinates			
Element	Х	Y	Z
С	-0.851757	-0.687369	-0.957943
\mathbf{C}	-0.803033	0.199236	0.248469
\mathbf{C}	0.550468	0.291476	0.865819
\mathbf{C}	1.111962	1.400238	1.285622
Н	-1.821981	-0.711474	-1.481323
Н	-1.193254	1.180230	-0.021008
Н	-1.525765	-0.217150	0.957842
Η	1.093900	-0.644726	0.955441
Н	2.071507	1.568673	1.746902
Η	0.359937	2.639468	1.100053
Ο	0.064664	-1.354311	-1.348446
Η	-0.101584	3.348047	0.973660
	Vibrat	ional Freque	encies
-1048.36	3192.49	3082.84	3051.58
2979.19	2907.99	2146.47	1839.25
1680.34	1412.95	1394.02	1337.74
1241.47	1199.90	1130.31	1093.75
1016.45	947.41	938.08	892.38
856.25	737.40	705.76	577.84
447.48	264.71	246.26	176.95
144.49	47.62		

Table S32: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the TS5-T–A+

Cartesian Coordinates			
Element	Х	Y	Ζ
С	-1.068713	-0.529475	0.200538
\mathbf{C}	-0.078057	0.186735	-0.674602
\mathbf{C}	1.237027	0.325225	0.027925
\mathbf{C}	1.713592	1.436997	0.538708
Н	-1.271371	-0.044464	1.169806
Н	0.022619	-0.369483	-1.602703
Н	-0.480192	1.175789	-0.892839
Н	1.817343	-0.588062	0.135470
Н	2.633631	1.627158	1.067311
Н	0.923956	2.650442	0.340496
Ο	-1.611212	-1.556147	-0.095619
Η	0.446998	3.344266	0.197792
	Vibrat	ional Freque	encies
-1047.84	3193.87	3094.99	3061.98
3020.72	2911.79	2151.92	1837.74
1664.00	1433.07	1391.10	1282.14
1250.97	1200.25	1122.23	1083.36
1063.75	945.15	944.00	912.24
908.08	804.61	664.42	495.78
437.75	347.99	234.95	202.96
65.01	56.68		

Table S33: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the TS5-G+A-

Cartesian Coordinates			
Element	Х	Y	Z
С	-0.386833	-0.733214	-0.985371
\mathbf{C}	-0.524644	-0.173907	0.400926
\mathbf{C}	0.796798	-0.034052	1.085372
\mathbf{C}	1.295504	1.087030	1.551128
Н	0.349711	-1.547300	-1.101359
Н	-1.063512	0.766767	0.350711
Н	-1.142723	-0.884937	0.957370
Н	1.381652	-0.945593	1.194275
Н	2.227898	1.280142	2.056353
Н	0.490722	2.297975	1.388369
О	-1.027546	-0.358755	-1.925652
Н	0.004268	2.989951	1.282310
	Vibrat	ional Freque	encies
-1042.67	3193.11	3102.86	3050.04
2984.40	2894.77	2165.64	1842.87
1674.79	1422.52	1405.34	1293.71
1240.62	1188.58	1133.38	1087.72
1048.31	1000.90	940.35	901.66
887.97	740.36	641.85	517.71
446.50	85.11	252.75	202.82
85.11	57.59		

Table S34: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the TS5-G+A+

Cartesian Coordinates			
Element	Х	Y	Z
С	-0.614564	0.315179	-0.812315
С	-0.188461	-0.892176	-0.029262
\mathbf{C}	1.114759	-0.745831	0.691611
\mathbf{C}	1.637245	0.374873	1.136123
Н	0.197892	0.864475	-1.315174
Н	-0.993930	-1.170271	0.648231
Н	-0.102908	-1.705723	-0.753566
Н	1.668888	-1.664896	0.862922
Н	2.560971	0.539924	1.666877
Н	0.892834	1.622370	1.013595
Ο	-1.756341	0.658543	-0.934410
Н	0.444503	2.349708	0.964873
	Vibrat	ional Freque	encies
-1065.60	3191.23	3066.59	3062.29
2998.01	2922.83	2128.35	1839.27
1665.95	1415.99	1399.85	1313.98
1258.79	1199.71	1152.10	1073.73
1046.06	986.64	954.12	954.12
894.50	729.46	611.28	578.24
457.68	331.93	288.03	232.62
108.87	69.04		

Table S35: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the TS5-G+C+

Cartesian Coordinates			
Element	Х	Υ	Ζ
С	-1.058330	1.152752	1.094796
С	-0.698353	0.108616	2.126455
С	0.471777	0.485915	2.968529
С	0.441268	0.528961	4.290910
Η	-1.581041	-0.107030	2.722405
Η	-0.498817	-0.788887	1.536113
Η	1.375228	0.751191	2.436819
Η	1.311316	0.810307	4.863179
Η	-0.453324	0.283074	4.845419
Ο	-0.390151	2.023172	0.676416
	Vibrat	ional Freque	encies
3328.42	3263.34	3231.53	3196.10
3115.22	2023.23	1775.89	1492.53
1458.01	1349.34	1311.07	1240.86
1137.12	1047.28	991.12	980.32
877.08	851.77	720.21	548.50
407.77	204.21	142.76	73.52

Table S36: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the $H_2C=CHCH_2\dot{C}O$

Cartesian Coordinates			
Element	Х	Υ	Ζ
С	-0.489077	0.743249	0.518634
С	-0.078528	-0.479258	1.157526
С	1.131096	-0.572915	1.848287
С	1.557979	-1.706316	2.465820
Η	-1.456718	0.720642	-0.000832
Η	-0.733038	-1.337320	1.092430
Η	1.739994	0.320362	1.876574
Η	2.499045	-1.740866	2.990226
Η	0.965095	-2.608842	2.449403
Ο	0.171631	1.765739	0.531291
	Vibrat	ional Freque	encies
3344.16	3270.04	3262.06	3238.44
3061.73	1747.77	1583.04	1516.69
1453.00	1388.02	1317.01	1238.48
1085.65	1055.50	1027.70	951.67
927.81	782.23	763.17	606.16
399.37	264.54	209.41	179.41

Table S37: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm^-1) for the H_2C=CHCHCOH

Cartesian Coordinates				
Element	Х	Υ	Ζ	
С	-0.961866	1.139431	1.425525	
\mathbf{C}	-0.054584	-0.063838	1.490318	
\mathbf{C}	1.300182	0.161871	1.986666	
\mathbf{C}	2.073881	1.112354	2.432457	
Η	-1.973050	0.914142	1.043826	
Η	-0.571542	-0.811804	2.097693	
Η	-0.033749	-0.493145	0.484900	
Η	3.094042	0.916686	2.733975	
Η	1.712142	2.133017	2.513497	
Ο	-0.666296	2.253728	1.744249	
	Vibrat	ional Frequ	encies	
3271.10	3171.56	3127.58	3093.88	
2997.68	1910.74	1821.04	1462.07	
1445.08	1428.99	1354.54	1255.59	
1065.18	1034.30	1004.74	943.11	
865.66	741.28	733.15	459.60	
353.44	190.51	155.38	123.22	

Table S38: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the $\rm H_2C=\dot{C}CH_2COH+H_2$

Cartesian Coordinates				
Element	Х	Υ	Ζ	
С	-0.250583	-0.915876	0.342167	
\mathbf{C}	-0.099655	-0.014519	1.529818	
\mathbf{C}	1.318534	0.124880	1.995226	
\mathbf{C}	1.867012	1.249785	2.363636	
Η	-1.268007	-0.963532	-0.081118	
Η	-0.551511	0.948936	1.295804	
Η	-0.723250	-0.446670	2.319182	
Η	1.899133	-0.790221	2.006714	
Η	1.585748	2.285786	2.445088	
Ο	0.634269	-1.570951	-0.130784	
	Vibrat	ional Frequ	encies	
3327.86	3229.42	3162.69	3090.82	
3013.26	1909.46	1742.40	1464.82	
1444.57	1380.22	1292.73	1238.93	
1116.29	1052.02	951.17	902.34	
849.39	763.28	723.68	619.51	
375.19	232.84	148.27	77.90	

Table S39: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the trans-HC=CHCH₂COH

Cartesian Coordinates				
Element	Х	Y	Ζ	
С	-0.092208	-0.920267	0.395308	
\mathbf{C}	0.100096	-0.034123	1.586984	
\mathbf{C}	1.517717	0.038862	2.048527	
\mathbf{C}	2.114761	1.125946	2.452942	
Η	-1.110737	-0.922679	-0.027146	
Η	-0.301729	0.953068	1.362857	
Η	-0.544426	-0.440988	2.373099	
Η	2.070531	-0.898428	2.023034	
Η	3.088215	1.399487	2.819189	
Ο	0.763536	-1.610620	-0.082656	
	Vibrat	ional Frequ	encies	
3342.23	3172.09	3165.32	3090.29	
3018.34	1907.35	1753.14	1465.42	
1446.69	1387.01	1284.10	1237.07	
1136.45	1055.08	952.04	866.10	
814.20	750.68	732.38	594.49	
399.51	229.90	152.43	78.34	

Table S40: Cartesian coordinates (em Å) and non-scaled vibrational frequencies (in cm⁻¹) for the cis-HCH₂COH

Table S41: Cartesian coordinates (in Å) and non-scaled vibrational frequencies (in $\rm cm^{-1})$ for the $\rm H_2$

Cartesian Coordinates				
Element	Х	Y	Z	
Н	0.000000	0.000000	0.131093	
Н	0.000000	0.000000	0.868907	
	Vibrat	tional Freq	uencies	
4535.8789				
Energy MPWB1K/6-31+G(d,p) (a.u.): -1.16489677538				

Table S42: Cartesian coordinates (in Å) for the H

Cartesian Coordinates			
Element	Х	Y	Z
Н	0.000000	0.000000	0.000000
Energy MPWB1K/6-31+G(d,p) (a.u.): -0.4959576			

Table S43: Forward classical barriers (V^{\ddagger}) , vibrationally adiabatic ground-state barriers $(V_{\rm a}^{G,\ddagger})$, electronic energy (ΔE), and enthalpy of reaction at 0 K (ΔH_0^0). All values are in kcal/mol.

Reaction	V^{\ddagger}	$V_{a}^{G,\ddagger}$	ΔE	ΔH_0^0
(R1)	4.86	3.36	-13.22	-14.62
(R2)	5.70	4.38	-24.49	-26.02
(R3)	14.51	12.91	6.65	4.20
(R4)	16.90	15.32	10.77	8.46
(R5)	16.46	14.77	9.98	7.56

T(K)	$Q_{\mathrm{T}}^{\mathrm{MS-HO}}$	$Q_{\mathrm{T}}^{\mathrm{MS-T(C)}}$	$Q_{\mathrm{T}}^{\mathrm{E2DT}}$
200.00	5.356E + 07	4.629E + 07	6.224E+07
300.00	6.315E + 08	5.859E + 08	7.467E + 08
400.00	4.969E + 09	4.754E + 09	5.848E + 09
500.00	3.188E + 10	$3.054E{+}10$	3.679E + 10
600.00	$1.799E{+}11$	$1.693E{+}11$	2.014E + 11
700.00	9.204E + 11	8.421E+11	9.948E + 11
800.00	4.340E + 12	3.838E + 12	4.513E + 12
900.00	1.908E + 13	1.624E + 13	1.904E + 13
1000.00	7.868E + 13	6.434E + 13	7.532E + 13
1100.00	3.059E + 14	2.404E + 14	2.812E + 14
1200.00	1.128E + 15	8.513E + 14	9.955E + 14
1300.00	$3.957E{+}15$	2.870E + 15	3.355E + 15
1400.00	1.325E + 16	9.245E + 15	1.080E + 16
1500.00	4.254E + 16	2.855E + 16	3.336E + 16
2000.00	8.310E+18	$4.665E{+}18$	5.458E + 18
2500.00	7.675E + 20	3.687E + 20	4.320E + 20

Table S44: Harmonic $(Q_{\rm T}^{\rm MS-HO})$ and anharmonic $(Q_{\rm T}^{\rm MS-T(C)}$ and $Q_{\rm T}^{\rm E2DT})$ total partition functions for the 3-butenal.

 a MS-OH (ZPE): 55.564 kcal/mol

 b E2DT (ZPE): 55.563 kcal/mol

T(K)	$Q_{\mathrm{T}}^{\mathrm{MS-HO}}$	$Q_{\mathrm{T}}^{\mathrm{MS-T(C)}}$	$Q_{\mathrm{T}}^{\mathrm{E2DT}}$
200.00	1.435E + 08	1.372E + 08	1.550E + 08
300.00	2.622E + 09	2.625E + 09	2.915E + 09
400.00	$3.050 \text{E}{+10}$	$3.080 \text{E}{+10}$	3.368E + 10
500.00	2.758E + 11	$2.741E{+}11$	2.966E + 11
600.00	2.109E + 12	2.034E + 12	2.187E + 12
700.00	1.421E + 13	1.317E + 13	1.412E + 13
800.00	8.597E + 13	7.643E + 13	8.167E + 13
900.00	4.747E + 14	4.036E + 14	4.307E + 14
1000.00	2.415E + 15	$1.962E{+}15$	2.092E + 15
1100.00	1.140E + 16	8.857E + 15	9.435E + 15
1200.00	5.032E + 16	3.740E + 16	3.985E + 16
1300.00	2.089E + 17	1.486E + 17	1.582E + 17
1400.00	8.187E + 17	5.584E + 17	5.948E + 17
1500.00	3.042E + 18	$1.993E{+}18$	2.122E + 18
2000.00	1.105E + 21	5.998E + 20	6.385E + 20
2500.00	1.656E + 23	7.650E + 22	8.143E + 22

Table S45: Harmonic $(Q_{\rm T}^{\rm MS-HO})$ and anharmonic $(Q_{\rm T}^{\rm MS-T(C)}$ and $Q_{\rm T}^{\rm E2DT})$ total partition functions for the transition state of CRC1.

 a MS-OH (ZPE): 54.064 kcal/mol

 b E2DT (ZPE): 54.065 kcal/mol

T(K)	$Q_{\mathrm{T}}^{\mathrm{MS-HO}}$	$Q_{\mathrm{T}}^{\mathrm{MS-T(C)}}$	$Q_{\mathrm{T}}^{\mathrm{E2DT}}$
200.00	3.926E + 07	3.614E + 07	1.848E + 07
300.00	6.024E + 08	5.748E + 08	3.809E + 08
400.00	6.549E + 09	$6.494 \text{E}{+}09$	4.953E + 09
500.00	5.796E + 10	$5.952E{+}10$	4.945E + 10
600.00	4.423E + 11	$4.665E{+}11$	4.106E + 11
700.00	2.996E + 12	3.215E + 12	$2.953E{+}12$
800.00	1.829E + 13	1.982E + 13	1.881E + 13
900.00	1.019E + 14	1.108E + 14	1.080E + 14
1000.00	5.231E + 14	5.678E + 14	5.658E + 14
1100.00	2.493E + 15	2.689E + 15	2.732E + 15
1200.00	1.110E + 16	1.185E + 16	1.225E + 16
1300.00	4.642E + 16	4.898E + 16	5.138E + 16
1400.00	1.834E + 17	$1.907E{+}17$	2.028E + 17
1500.00	$6.859E{+}17$	7.027E + 17	7.559E + 17
2000.00	2.559E + 20	2.394E + 20	2.696E + 20
2500.00	3.907E + 22	3.320E + 22	3.852E + 22

Table S46: Harmonic $(Q_{\rm T}^{\rm MS-HO})$ and anharmonic $(Q_{\rm T}^{\rm MS-T(C)}$ and $Q_{\rm T}^{\rm E2DT})$ total partition functions for the transition state of CRC2.

 a MS-OH (ZPE): 54.236 kcal/mol

 b E2DT $\,$ (ZPE): 53.901 kcal/mol $\,$

T(K)	$Q_{\mathrm{T}}^{\mathrm{MS-HO}}$	$Q_{\mathrm{T}}^{\mathrm{MS-T(C)}}$	$Q_{\mathrm{T}}^{\mathrm{E2DT}}$
200.00	$4.410 \text{E}{+08}$	4.002E + 08	5.595E + 08
300.00	$6.880 \text{E}{+}09$	6.549E + 09	8.168E + 09
400.00	7.203E + 10	$6.837E{+}10$	8.073E + 10
500.00	6.064E + 11	$5.598E{+}11$	6.422E + 11
600.00	4.403E + 12	$3.905E{+}12$	4.405E + 12
700.00	2.849E + 13	2.412E + 13	2.695E + 13
800.00	1.670E + 14	$1.347E{+}14$	1.495E + 14
900.00	8.980E + 14	$6.895E{+}14$	7.624E + 14
1000.00	4.468E + 15	3.267E + 15	3.602E + 15
1100.00	2.071E + 16	1.444E + 16	1.589E + 16
1200.00	9.003E + 16	5.987E + 16	6.579E + 16
1300.00	3.687E + 17	2.342E + 17	2.572E + 17
1400.00	1.429E + 18	8.684E + 17	9.532E + 17
1500.00	5.255E + 18	3.063E + 18	3.358E + 18
2000.00	1.842E + 21	8.854E + 20	9.700E + 20
2500.00	2.704E + 23	1.103E + 23	1.208E + 23

Table S47: Harmonic $(Q_{\rm T}^{\rm MS-HO})$ and anharmonic $(Q_{\rm T}^{\rm MS-T(C)}$ and $Q_{\rm T}^{\rm E2DT})$ total partition functions for the transition state of CRC3.

 a MS-OH (ZPE): 53.851 kcal/mol

 b E2DT $\,$ (ZPE): 53.896 kcal/mol $\,$

T(K)	$Q_{\mathrm{T}}^{\mathrm{MS-HO}}$	$Q_{\mathrm{T}}^{\mathrm{MS-T(C)}}$	$Q_{\mathrm{T}}^{\mathrm{E2DT}}$
200.00	2.082E + 08	1.881E + 08	2.299E + 08
300.00	3.858E + 09	3.699E + 09	4.378E + 09
400.00	4.481E + 10	4.373E + 10	5.079E + 10
500.00	4.039E + 11	$3.906E{+}11$	4.494E + 11
600.00	3.080E + 12	2.903E + 12	3.323E + 12
700.00	2.066E + 13	1.880E + 13	2.149E + 13
800.00	1.245E + 14	1.089E + 14	1.244E + 14
900.00	$6.840 \text{E}{+}14$	5.735E + 14	6.556E + 14
1000.00	3.462E + 15	2.780E + 15	3.181E + 15
1100.00	1.628E + 16	1.251E + 16	1.434E + 16
1200.00	7.153E + 16	5.268E + 16	6.044E + 16
1300.00	$2.957E{+}17$	2.087E + 17	2.398E + 17
1400.00	1.155E + 18	7.821E + 17	9.000E + 17
1500.00	4.278E + 18	2.784E + 18	3.207E + 18
2000.00	1.533E + 21	8.294E + 20	9.605E + 20
2500.00	2.278E+23	1.051E + 23	1.221E + 23

Table S48: Harmonic $(Q_{\rm T}^{\rm MS-HO})$ and anharmonic $(Q_{\rm T}^{\rm MS-T(C)}$ and $Q_{\rm T}^{\rm E2DT})$ total partition functions for the transition state of CRC4.

 a MS-OH (ZPE): 53.985 kcal/mol

 b E2DT (ZPE): 53.983 kcal/mol

T(K)	$Q_{\mathrm{T}}^{\mathrm{MS-HO}}$	$Q_{\mathrm{T}}^{\mathrm{MS-T(C)}}$	$Q_{\mathrm{T}}^{\mathrm{E2DT}}$
200.00	1.585E + 08	1.459E + 08	1.530E + 08
300.00	2.825E + 09	2.720E + 09	2.832E + 09
400.00	3.272E + 10	$3.192E{+}10$	3.304E + 10
500.00	2.969E + 11	$2.867E{+}11$	2.966E + 11
600.00	2.282E + 12	2.150E + 12	2.231E + 12
700.00	1.544E + 13	1.406E + 13	1.468E + 13
800.00	9.375E + 13	8.219E + 13	8.627E + 13
900.00	5.185E + 14	$4.368E{+}14$	4.614E + 14
1000.00	2.640E + 15	2.135E + 15	2.268E + 15
1100.00	1.249E + 16	$9.685E{+}15$	1.034E + 16
1200.00	5.513E + 16	4.108E + 16	4.404E + 16
1300.00	2.289E + 17	$1.638E{+}17$	1.764E + 17
1400.00	8.976E + 17	6.178E + 17	6.677E + 17
1500.00	3.337E + 18	2.212E + 18	2.397E + 18
2000.00	1.213E + 21	6.751E + 20	7.406E + 20
2500.00	1.818E + 23	8.703E + 22	9.615E + 22

Table S49: Harmonic $(Q_{\rm T}^{\rm MS-HO})$ and anharmonic $(Q_{\rm T}^{\rm MS-T(C)}$ and $Q_{\rm T}^{\rm E2DT})$ total partition functions for the transition state of CRC5.

 a MS-OH (ZPE): 53.880 kcal/mol

 b E2DT $\,$ (ZPE): 53.897 kcal/mol $\,$

Table S50: Anharmonic factor $(F^{MS-T(C),Y})$ for 3-Butenal and transition states of each CRC, and the multiplicative coefficient (F^{X}_{anh}) to account the torsional anharmonicity in the reactions (R1)–(R5)

			$F^{\rm MS-T(C)}$),Y				Ι	_ப MS-T(C) anh		
$\mathbf{I}(\mathbf{N})$	3-butenal	CRC1	CRC2,6	CRC3	CRC4	CRC5	(R1)	(R2)	(R3)	(R4)	(R5)
200	0.856	0.957	0.921	0.906	0.902	0.939	1.118	1.076	1.059	1.054	1.097
300	0.920	1.002	0.955	0.949	0.957	0.979	1.090	1.038	1.032	1.041	1.064
400	0.949	1.010	0.993	0.947	0.976	0.991	1.064	1.046	0.997	1.028	1.044
500	0.950	0.994	1.028	0.920	0.967	0.980	1.046	1.082	0.968	1.017	1.032
009	0.934	0.964	1.056	0.884	0.942	0.956	1.032	1.130	0.946	1.009	1.023
200	0.908	0.928	1.075	0.844	0.910	0.924	1.021	1.183	0.929	1.002	1.018
800	0.878	0.889	1.086	0.804	0.875	0.890	1.013	1.237	0.916	0.996	1.014
006	0.845	0.850	1.090	0.765	0.839	0.855	1.006	1.289	0.905	0.992	1.011
1000	0.813	0.813	1.088	0.729	0.803	0.821	1.000	1.339	0.897	0.988	1.010
1100	0.781	0.777	1.081	0.694	0.769	0.788	0.995	1.385	0.889	0.985	1.009
1200	0.750	0.743	1.071	0.662	0.737	0.756	0.991	1.428	0.883	0.983	1.009
1300	0.721	0.712	1.058	0.633	0.706	0.727	0.988	1.468	0.878	0.980	1.009
1400	0.693	0.682	1.043	0.606	0.678	0.699	0.985	1.505	0.874	0.978	1.009
1500	0.667	0.655	1.027	0.581	0.651	0.673	0.982	1.540	0.871	0.976	1.010
2000	0.558	0.543	0.938	0.479	0.541	0.566	0.973	1.682	0.858	0.970	1.014
2500	0.478	0.462	0.852	0.406	0.462	0.486	0.967	1.784	0.851	0.967	1.018

T(K)	Path 1	Path 2	Path 3	Path 4	Path 5
200.00	9.9069E-01	9.8834E-01	8.1264 E-01	9.9192 E-01	5.3518E-01
300.00	9.9507 E-01	9.9365E-01	9.5580 E-01	9.9455 E-01	7.1427E-01
400.00	9.9683E-01	9.9590 E-01	9.8182E-01	9.9588E-01	8.0111E-01
500.00	9.9770E-01	9.9703E-01	9.8515E-01	9.9665 E-01	8.2903E-01
600.00	9.9819E-01	9.9768E-01	9.8709E-01	9.9713E-01	8.3854E-01
700.00	9.9849E-01	9.9808E-01	9.8831E-01	9.9745E-01	3.5419E-01
800.00	9.9869E-01	9.9835E-01	9.8911E-01	9.9767E-01	3.3512E-01
900.00	9.9882E-01	9.9853E-01	9.8966E-01	9.9783E-01	3.2110E-01
1000.00	9.9893E-01	9.9867E-01	9.9006E-01	9.9796E-01	3.1041E-01
1100.00	9.9900E-01	9.9877E-01	9.9035E-01	9.9805E-01	3.0203E-01
1200.00	9.9906E-01	9.9885E-01	9.9057 E-01	9.9813E-01	2.9531E-01
1300.00	9.9911E-01	9.9891E-01	9.9074 E-01	9.9819E-01	2.8982E-01
1400.00	9.9915E-01	9.9897 E-01	9.9087 E-01	9.9824 E-01	2.8528E-01
1500.00	9.9918E-01	9.9901E-01	9.9098E-01	9.9829E-01	2.8148E-01
1600.00	9.9921E-01	9.9904E-01	9.9106E-01	9.9832E-01	2.7825E-01
1700.00	9.9923E-01	9.9907 E-01	9.9112E-01	9.9835E-01	2.7549E-01
1800.00	9.9925E-01	9.9910E-01	9.9118E-01	9.9838E-01	2.7311E-01
1900.00	9.9927 E-01	9.9912E-01	9.9122 E-01	9.9841E-01	2.7105 E-01
2000.00	9.9929E-01	9.9914E-01	9.9126E-01	9.9843E-01	2.6925 E-01
2500.00	9.9934E-01	9.9921E-01	9.7546E-01	9.9851E-01	2.6300E-01

Table S51: Recrossing $(\Gamma_j^{\text{CVT}}(T))$ coefficient for the individual paths of CRC1.
T(K)	Path 1	Path 2	Path 3	Path 4	Path 5
200	8.258	9.100	27.530	11.240	7.359
300	2.522	2.650	5.148	2.905	2.409
400	1.678	1.730	2.663	1.820	1.640
500	1.392	1.421	1.915	1.467	1.373
600	1.258	1.276	1.586	1.305	1.246
700	1.183	1.196	1.411	1.216	1.176
800	1.137	1.147	1.305	1.161	1.132
900	1.107	1.115	1.236	1.126	1.103
1000	1.086	1.092	1.188	1.101	1.083
1100	1.070	1.075	1.154	1.082	1.068
1200	1.059	1.063	1.128	1.069	1.057
1300	1.050	1.053	1.108	1.058	1.048
1400	1.043	1.046	1.093	1.050	1.041
1500	1.037	1.040	1.081	1.043	1.036
2000	1.021	1.022	1.045	1.024	1.020
2500	1.013	1.014	1.029	1.015	1.013

Table S52: Tunneling $(\kappa_j^{\text{CVT/SCT}}(T))$ coefficient for the individual paths of CRC1.

T(K)	Path 1	Path 2	Path 3	Path 4	Path 5
200.00	8.7170E-01	7.3261E-01	9.9479E-01	6.8977E-01	9.6615E-01
300.00	9.5194 E-01	9.6965 E-01	9.9951E-01	8.8379E-01	9.8562E-01
400.00	9.7536E-01	9.9298E-01	9.9445 E-01	9.6373E-01	9.9332E-01
500.00	9.8743E-01	9.9932E-01	9.8853E-01	9.9816E-01	9.9671E-01
600.00	9.9386E-01	9.9961E-01	9.8342E-01	9.2303E-01	9.9831E-01
700.00	9.9731E-01	9.9622E-01	9.7931E-01	8.8937E-01	9.9911E-01
800.00	9.9910E-01	9.9155E-01	9.7605E-01	8.6246E-01	9.9953E-01
900.00	9.9987E-01	9.8669E-01	9.7345E-01	8.4070E-01	9.9976E-01
1000.00	9.9994 E-01	9.8200E-01	9.7136E-01	8.2282E-01	9.9988E-01
1100.00	9.9912E-01	9.7758E-01	9.6965 E-01	8.0789E-01	9.9995E-01
1200.00	9.9743E-01	9.7343E-01	9.6824 E-01	7.9502E-01	9.9998E-01
1300.00	9.9502E-01	9.6949E-01	9.6707 E-01	7.8369E-01	1.0000E + 00
1400.00	9.9203E-01	9.6572 E-01	9.6607 E-01	7.7360E-01	1.0000E + 00
1500.00	9.8859E-01	9.6204 E-01	9.6522 E-01	7.6451E-01	1.0000E + 00
1600.00	9.8485E-01	9.5836E-01	9.6449 E-01	7.5624 E-01	9.9999E-01
1700.00	9.8090E-01	9.5452 E-01	9.4333E-01	7.4864E-01	9.9998E-01
1800.00	9.7683E-01	9.4766 E-01	8.9761E-01	7.4161E-01	9.9997E-01
1900.00	9.7271E-01	9.3859E-01	8.5763 E-01	7.3505E-01	9.9996E-01
2000.00	9.6859E-01	9.2950E-01	8.2246E-01	7.2888E-01	9.9994E-01
2500.00	9.4742E-01	8.8896E-01	6.9616E-01	6.9149E-01	9.9989E-01

Table S53: Recrossing $(\Gamma_j^{\text{CVT}}(T))$ coefficient for the individual paths of CRC2 and CRC6..

Table S54: Tunneling $(\kappa_j^{\text{CVT/SCT}}(T))$ coefficient for the individual paths of CRC2 and CRC6.

T(K)	Path 1	Path 2	Path 3	Path 4	Path 5
200	20.910	17.530	26.390	23.200	31.690
300	3.826	3.529	4.175	3.961	4.437
400	2.125	2.031	2.228	2.165	2.288
500	1.620	1.574	1.669	1.639	1.693
600	1.398	1.370	1.427	1.410	1.440
700	1.279	1.260	1.298	1.287	1.306
800	1.208	1.194	1.221	1.213	1.227
900	1.161	1.150	1.171	1.165	1.175
1000	1.128	1.120	1.137	1.132	1.139
1100	1.105	1.098	1.112	1.108	1.114
1200	1.088	1.082	1.093	1.090	1.095
1300	1.074	1.069	1.079	1.076	1.080
1400	1.064	1.060	1.067	1.065	1.069
1500	1.055	1.052	1.059	1.057	1.060
2000	1.031	1.029	1.033	1.031	1.033
2500	1.020	1.018	1.021	1.020	1.021

T(K)	Path 1	Path 2	Path 3	Path 4	Path 5
200.00	2.5226E-01	7.7510E-01	1.4873E-01	3.4956E-01	4.2580E-01
300.00	2.9354E-01	9.5021E-01	2.5220 E-01	9.9704 E-01	6.0397E-01
400.00	9.9907E-01	9.8553E-01	3.2735E-01	9.8566E-01	7.2707E-01
500.00	9.9422E-01	9.9715E-01	3.8152E-01	9.7309E-01	8.1551E-01
600.00	9.8839E-01	9.9994E-01	4.2100E-01	9.6180E-01	8.7981E-01
700.00	9.8292E-01	9.9908E-01	4.5010E-01	9.5232E-01	9.2619E-01
800.00	9.7818E-01	9.9637E-01	4.7181E-01	9.4455 E-01	9.4796E-01
900.00	9.7420E-01	9.9301E-01	4.8817E-01	9.3823E-01	9.6021E-01
1000.00	9.7089E-01	9.8958E-01	5.0066E-01	9.3307E-01	9.6829E-01
1100.00	9.6814E-01	9.8630E-01	5.1028E-01	9.2884E-01	9.7386E-01
1200.00	9.6585E-01	9.8327E-01	5.1778E-01	9.2533E-01	9.7785E-01
1300.00	9.6392E-01	9.8052E-01	5.2368E-01	9.2241E-01	9.8080E-01
1400.00	9.6230E-01	9.7803E-01	5.2836E-01	9.1995 E-01	9.8304E-01
1500.00	9.6091E-01	9.7577E-01	5.3211E-01	9.1786E-01	9.8477E-01
1600.00	9.5973E-01	9.7373E-01	5.3514E-01	9.1607 E-01	9.8614E-01
1700.00	9.5870E-01	9.6544 E-01	5.3760E-01	9.1453E-01	9.8724 E-01
1800.00	9.5782 E-01	9.5421 E-01	5.3960E-01	9.1319E-01	9.8813E-01
1900.00	9.5704 E-01	9.4415E-01	5.4125 E-01	9.1202E-01	9.8887E-01
2000.00	9.5636E-01	9.3509E-01	5.4260 E-01	9.1099E-01	9.8949E-01
2500.00	9.5392E-01	9.0078E-01	5.4659E-01	9.0730E-01	9.9146E-01

Table S55: Recrossing $(\Gamma_j^{\text{CVT}}(T))$ coefficient for the individual paths of CRC3.

T(K)	Path 1	Path 2	Path 3	Path 4	Path 5
200	$55,\!280$	41,000	43,740	41,610	31,360
300	$4,\!850$	4,202	4,322	4,264	3,773
400	2,332	$2,\!155$	$2,\!190$	$2,\!176$	$2,\!035$
500	$1,\!699$	$1,\!617$	$1,\!634$	$1,\!627$	$1,\!560$
600	$1,\!439$	$1,\!391$	$1,\!401$	$1,\!397$	$1,\!357$
700	$1,\!304$	$1,\!272$	$1,\!279$	$1,\!276$	$1,\!249$
800	1,224	1,201	1,206	1,204	$1,\!185$
900	$1,\!173$	$1,\!155$	$1,\!159$	$1,\!158$	1,143
1000	$1,\!138$	$1,\!124$	$1,\!127$	$1,\!126$	$1,\!114$
1100	$1,\!112$	$1,\!101$	$1,\!104$	$1,\!103$	$1,\!093$
1200	$1,\!093$	$1,\!084$	$1,\!086$	$1,\!085$	$1,\!078$
1300	$1,\!079$	$1,\!071$	1,073	1,072	1,066
1400	1,068	$1,\!061$	1,063	1,062	$1,\!056$
1500	$1,\!059$	$1,\!053$	$1,\!054$	$1,\!054$	$1,\!049$
2000	1,033	1,029	1,030	1,030	1,027
2500	1,021	1,019	1,019	1,019	1,017

Table S56: Tunneling $(\kappa_j^{\text{CVT/SCT}}(T))$ coefficient for the individual paths of CRC3.

T(K)	Path 1	Path 2	Path 3	Path 4	Path 5
400.00	9.7636E-01	6.6995E-01	3.0280E-01	5.8786E-01	2.3251E-01
500.00	9.9327E-01	7.6799E-01	2.9788 E-01	6.5676E-01	2.2701E-01
600.00	9.9894E-01	8.3841E-01	2.9525E-01	7.0774E-01	2.2381E-01
700.00	9.9999E-01	8.8892E-01	2.9392E-01	7.4609E-01	2.2194E-01
800.00	9.9902E-01	9.2196E-01	2.9338E-01	7.7528E-01	2.2088E-01
900.00	9.9717E-01	9.4280E-01	2.9333E-01	7.9774E-01	2.2036E-01
1000.00	9.9503E-01	9.5637 E-01	2.9360E-01	8.1521E-01	2.2019E-01
1100.00	9.9289E-01	9.6555E-01	2.9408E-01	8.2895E-01	2.2025 E-01
1200.00	9.9088E-01	9.7198E-01	2.9469E-01	8.3987E-01	2.2048E-01
1300.00	9.8903E-01	9.7663 E-01	2.9539E-01	8.4867E-01	2.2082E-01
1400.00	9.8737E-01	9.8008E-01	2.9614E-01	8.5582E-01	2.2123E-01
1500.00	9.8589E-01	9.8270E-01	2.9692 E-01	8.6168E-01	2.2169E-01
1600.00	9.8457E-01	9.8474 E-01	2.9772E-01	8.6654 E-01	2.2219E-01
1700.00	9.8340E-01	9.8635E-01	2.9853E-01	8.7058E-01	2.2271E-01
1800.00	9.8235E-01	9.8764 E-01	2.9934E-01	8.7397E-01	2.2325E-01
1900.00	9.8142E-01	9.8870E-01	3.0014E-01	8.7406E-01	2.2378E-01
2000.00	9.8058E-01	9.8957E-01	3.0093E-01	8.6964E-01	2.2433E-01
2500.00	9.7750E-01	9.9226E-01	3.0467 E-01	8.5349E-01	2.2697 E-01

Table S57: Recrossing $(\Gamma_j^{\text{CVT}}(T))$ coefficient for the individual paths of CRC4.

T(K)	Path 1	Path 2	Path 3	Path 4	Path 5
200	11.680	12.610	12.530	19.920	12.460
300	2.586	2.666	2.662	3.193	2.657
400	1.664	1.692	1.691	1.864	1.690
500	1.376	1.391	1.390	1.477	1.389
600	1.245	1.254	1.253	1.307	1.253
700	1.173	1.180	1.179	1.216	1.179
800	1.129	1.134	1.134	1.161	1.134
900	1.101	1.104	1.104	1.125	1.104
1000	1.081	1.083	1.083	1.100	1.083
1100	1.066	1.068	1.068	1.081	1.068
1200	1.055	1.057	1.057	1.068	1.057
1300	1.047	1.048	1.048	1.058	1.048
1400	1.040	1.042	1.041	1.049	1.041
1500	1.035	1.036	1.036	1.043	1.036
2000	1.019	1.020	1.020	1.024	1.020
2500	1.012	1.013	1.013	1.015	1.013

Table S58: Tunneling $(\kappa_j^{\text{CVT/SCT}}(T))$ coefficient for the individual paths of CRC4.

Table S	59: Recro	ssing (Γ_j^{CVT})	T)) coefficient	for the indiv	idual paths of
	T(K)	Path 1	Path 2	Path 3	Path 4
	200.00	2.6417E-01	6.2600E-01	2.8102E-01	7.5604E-01
	300.00	4.2266E-01	8.1962E-01	4.2217E-01	9.1457E-01
	400.00	5.3609E-01	9.2399E-01	5.2057E-01	9.6877E-01
	500.00	6.1799E-01	9.6852E-01	5.9157E-01	9.8955E-01
	600.00	6.7810E-01	9.8871E-01	6.4400E-01	9.9737E-01
	700.00	7.2282E-01	9.9713E-01	6.8326E-01	9.9977E-01
	800.00	7.5647E-01	9.9980E-01	7.1296E-01	9.9986E-01
	900.00	7.8211E-01	9.9961E-01	7.3567 E-01	9.9893E-01
	1000.00	8.0188E-01	9.9754 E-01	7.5320E-01	9.9758E-01
	1100.00	8.1730E-01	9.9445 E-01	7.6689E-01	9.9612E-01
	1200.00	8.2947 E-01	9.9089E-01	7.7768E-01	9.9469E-01
	1300.00	8.3918E-01	9.8718E-01	7.8627E-01	9.9334E-01
	1400.00	8.4701E-01	9.8349E-01	7.9318E-01	9.9211E-01
	1500.00	8.5338E-01	9.7992 E-01	7.9878E-01	9.9101E-01
	1600.00	8.5861E-01	9.7651E-01	8.0336E-01	9.9001E-01
	1700.00	8.6294 E-01	9.7328E-01	8.0713E-01	9.8912E-01
	1800.00	8.6655E-01	9.7022E-01	8.1025E-01	9.8833E-01
	1900.00	8.6249E-01	9.6733E-01	8.1285E-01	9.8761E-01
	2000.00	8.5850E-01	9.6459 E-01	8.1503E-01	9.8698E-01
	2500.00	8.4396E-01	9.5239E-01	8.2180E-01	9.8461E-01

T(K)	Path 1	Path 2	Path 3	Path 4
200	16.540	15.520	15.880	21.370
300	2.941	2.883	2.878	3.291
400	1.782	1.765	1.760	1.894
500	1.436	1.427	1.425	1.491
600	1.282	1.277	1.275	1.315
700	1.199	1.195	1.194	1.221
800	1.148	1.146	1.145	1.165
900	1.115	1.113	1.112	1.127
1000	1.092	1.090	1.090	1.102
1100	1.075	1.074	1.073	1.083
1200	1.063	1.062	1.061	1.069
1300	1.053	1.052	1.052	1.059
1400	1.046	1.045	1.045	1.050
1500	1.040	1.039	1.039	1.044
2000	1.022	1.022	1.022	1.024
2500	1.014	1.014	1.014	1.016

Table S60: Tunneling $(\kappa_j^{\text{CVT/SCT}}(T))$ coefficient for the individual paths of CRC5.

Table S61: Representative tunneling energy (RTE) at 200 K and the maxima of the vibrationally adiabatic ground-state potential curves for reaction paths 1–5 of CRC1. All values are in kcal/mol.

Path	RTE	V_a^G
Path 1	57.684	59.035
Path 2	58.162	59.501
Path 3	57.790	59.675
Path 4	58.693	60.267
Path 5	59.484	60.667

Figure S1: Minimum energy potentials (V_{MEP}) for the individual paths of CRC1–CRC6.

-0.4

0.1

1.0

1.4

Figure S2: Vibrationally adiabatic potentials (V_a^G) for the individual paths of CRC1–CRC6.

T(K)	(R1)	(R2)	(R3)	(R4)	(R5)
200.00	2.209E-15	4.699 E- 17	3.316E-25	2.741E-28	8.206E-28
300.00	4.683E-14	1.960E-15	1.642E-20	1.338E-22	2.441E-22
400.00	2.453E-13	1.469E-14	4.050E-18	1.054E-19	1.526E-19
500.00	7.199E-13	5.448E-14	1.189E-16	6.251E-18	7.944E-18
600.00	1.566E-12	1.402E-13	1.195E-15	1.008E-16	1.179E-16
700.00	2.854E-12	2.901E-13	6.481E-15	7.664 E- 16	8.468E-16
800.00	4.634E-12	5.204 E- 13	2.379E-14	3.628E-15	3.846E-15
900.00	6.942E-12	8.448E-13	6.715E-14	1.248E-14	1.282E-14
1000.00	9.804E-12	1.275E-12	1.573E-13	3.424E-14	3.433E-14
1100.00	1.324E-11	1.819E-12	3.210E-13	7.951E-14	7.821E-14
1200.00	1.725E-11	2.485E-12	5.900E-13	1.628E-13	1.576E-13
1300.00	2.184E-11	3.278E-12	9.994 E- 13	3.019E-13	2.885E-13
1400.00	2.702E-11	4.200E-12	1.586E-12	5.179E-13	4.894E-13
1500.00	3.277E-11	5.256E-12	2.388E-12	8.338E-13	7.805E-13

2000.00 6.995E-11 1.255E-11 1.086E-11 4.789E-12 4.343E-12

2.938E-11

1.490E-11

1.327E-11

2.313E-11

2500.00

1.203E-10

Table S62: Harmonic MS-TST thermal rate constants for (R1)-(R5) in a wide range of temperatures. All rate constants are in cm³ molecule¹ s¹.

Table S63: MP-CVT/SCT thermal rate constants for (R1)–(R5), including the torsional anharmonicity estimated with MS-T(C) method All rate constants are in cm³ molecule⁻¹ s⁻¹.

T(K)	(R1)	(R2)	(R3)	(R4)	(R5)
200.00	2.486E-14	8.173E-16	8.166E-24	2.327E-27	6.789E-27
300.00	1.433E-13	5.823E-15	5.121E-20	2.619E-22	4.765 E-22
400.00	4.602 E- 13	2.329E-14	7.024E-18	1.455E-19	2.037E-19
500.00	1.061E-12	6.537 E-14	1.592E-16	7.507E-18	8.996E-18
600.00	2.012E-12	1.490E-13	1.390E-15	1.126E-16	1.235E-16
700.00	3.363E-12	2.922E-13	6.632 E- 15	8.103E-16	8.501E-16
800.00	5.152 E- 12	5.136E-13	2.293E-14	3.612E-15	3.763E-15
900.00	7.407E-12	8.308E-13	5.957E-14	1.198E-14	1.182E-14
1000.00	1.015E-11	1.261E-12	1.355E-13	3.165E-14	2.936E-14
1100.00	1.328E-11	1.811E-12	2.638E-13	7.184E-14	6.643E-14
1200.00	1.696E-11	2.502 E- 12	4.770E-13	1.457E-13	1.334E-13
1300.00	2.110E-11	3.343E-12	7.979E-13	2.628E-13	2.438E-13
1400.00	2.571E-11	4.344E-12	1.254 E- 12	4.490E-13	3.930E-13
1500.00	3.080E-11	5.512E-12	1.873E-12	7.212E-13	6.279E-13
2000.00	6.296E-11	1.401E-11	8.202E-12	4.133E-12	3.539E-12
2500.00	1.056E-10	2.712E-11	2.204 E-11	1.290E-11	1.096E-11

Table S64: Fitting parameters to the MP-CVT/SCT thermal rate constants for (R1)–(R5), including the torsional anharmonicity estimated with MS-T(C) method. The parameters for the the overall thermal rate constants were also listed.

	A/cm^3 molecule ⁻¹ s ⁻¹	n	E/K	T_0/K	RMSR
(R1)	$1.62 \ge 10^{-12}$	2.10	620	171	$6.72 \ge 10^{-5}$
(R2)	$1.23 \ge 10^{-13}$	2.73	833	227	$3.07 \ge 10^{-4}$
(R3)	$4.62 \ge 10^{-13}$	2.62	3990	112	$9.88 \ge 10^{-5}$
(R4)	$3.94 \ge 10^{-13}$	2.69	5285	102	$1.11 \ge 10^{-4}$
(R5)	$2.69 \ge 10^{-13}$	2.75	5042	103	$2.63 \ge 10^{-4}$
Overall	$6.93 \ge 10^{-13}$	2.69	379	127	$3.34 \ge 10^{-5}$

T(K)	(E)-2-Butenal $+$ H	3-Butenal + H
200.0	1.86	1.86
300.0	2.81	2.54
400.0	3.53	3.12
500.0	4.13	3.66
600.0	4.69	4.20
800.0	5.76	4.74
1000.0	6.82	6.36
1500.0	9.47	9.09
2000.0	12.14	11.83
2500.0	14.82	14.58

Table S65: Activation energies (in kcal/mol) for the overall thermal rate constants of (E)-2-Butenal and 3-Butenal with H-atom.