Supporting Information

High loading BaTiO3 nanoparticles chemically bonded with fluorinated silicone rubber for largely enhanced dielectric properties of polymer nanocomposites

Fang-Yan Du ^{*a*}, Rui-Chao Chen ^{*a*}, Junjin Che ^{*b*}, Wei-Di Xu ^{*a*}, Xiu Liu ^{*a*}, Yin-Tao Li ^{*a*}, Yuan-Lin Zhou ^{*a*}, Jinkai Yuan ^{*b**}, Quan-Ping Zhang ^{*a**}

^a State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China ^b Centre de Recherche Paul Pascal, CNRS, University of Bordeaux, UMR5031, 33600 Pessac, France

Corresponding authors: Jinkai Yuan; Quan-Ping Zhang E-mails: jinkai.yuan@crpp.cnrs.fr; zhangqp@swust.edu.cn

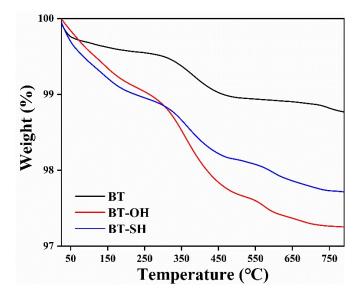


Figure S1. TGA spectrum of the BT, BT-OH and BT-SH nanoparticles.

	Weight loss	Grafting ratio/ (group nm ⁻²)
ВТ	1.2%	- (group nm)
BT-OH	2.1%	32.6
BT-SH	2.7%	10.3

Table S1 TG data and grafting density of BT. BT-OH and BT-SH

Weight loss of BT, BT-OH and BT-SH nanoparticles are determined by TGA, as shown in **Figure S1** and **Table S1**. According to the method in literature ^[3], the grafting density of BT-OH and BT-SH nanoparticles are calculated based on the weight loss and molar mass of grafting groups. Considering each nanoparticle as a sphere with d=100nm, and product of KH580 after decomposition as neat SiO₂. The molar mass of hydroxyl groups, KH580, SiO₂ and BaTiO₃ are 17 g mol⁻¹, 238 g mol⁻¹, 60 g mol⁻¹ and 233 g mol⁻¹, respectively. The structure of BT unit cell is cubic with a=b=c=0.395nm.

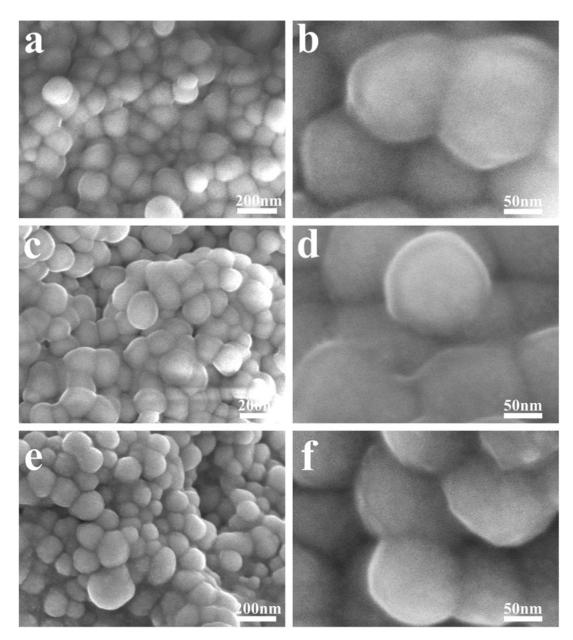


Figure S2 SEM images of the BT/FSR nanocomposites with the loading of 82 wt.% (a, b), 86 wt.% (c, d) and 90 wt.% (e, f).

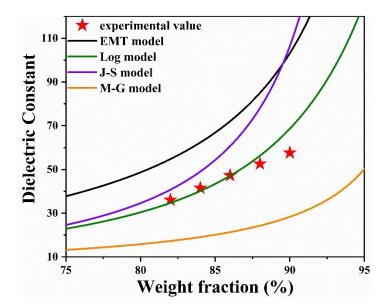


Figure S3. Plots of dielectric constants versus weight fraction ($\rho_{BT}=6.08g/cm^3$, $\rho_{FSR}=1.2g/cm^3$) with various models for polymer-based composites. For calculation, dielectric constants of BT ($\epsilon=300$) and FSR ($\epsilon=5$) were applied as dielectric constants of filler and matrix. The shape factor (n=0.09) in EMT model was obtained from BT/VSR composites in former study.

	1	
Table S2 Theoretical models for	nredicting the dielectric cons	tants of nolymer composites
Table 52 Theoretical models for	predicting the dielectric cons	and of polymer composites

Models	Equations
EMT model	$\varepsilon = \varepsilon_{M} \left[1 + \frac{\operatorname{vol}_{F}\% \left(\varepsilon_{F} - \varepsilon_{M}\right)}{\varepsilon_{M} + n \operatorname{vol}_{M}\% \left(\varepsilon_{F} - \varepsilon_{M}\right)} \right]_{[1]}$
Log model	$\varepsilon = e^{\operatorname{vol}_F \% \ln \varepsilon_F + \operatorname{vol}_M \% \ln \varepsilon_M} [2]$
J-S model	$\varepsilon = \frac{\varepsilon_{M}(1 - vol_{F}\%) + \varepsilon_{F}vol_{F}\%\frac{3\varepsilon_{M}}{\varepsilon_{F} + \varepsilon_{M}} \left[1 + \frac{3vol_{F}\%(\varepsilon_{F})}{\varepsilon_{F} + \varepsilon_{F}} + \frac{3vol_{F}\%(\varepsilon_{F})}{(1 - vol_{F}\%) + vol_{F}\%\frac{3\varepsilon_{M}}{\varepsilon_{F} + \varepsilon_{M}} \left[1 + \frac{3vol_{F}\%(\varepsilon_{F})}{\varepsilon_{F} + \varepsilon_{M}}\right]}{(1 - vol_{F}\%) + vol_{F}\%\frac{3\varepsilon_{M}}{\varepsilon_{F} + \varepsilon_{M}} \left[1 + \frac{3vol_{F}\%(\varepsilon_{F})}{\varepsilon_{F} + \varepsilon_{M}}\right]}$
	$[2] \qquad \qquad$
M-G model	$\varepsilon = \varepsilon_M \frac{\varepsilon_F (2vol_F\% + 1) + 2\varepsilon_M (1 - vol_F\%)}{\varepsilon_F (1 - vol_F\%) + \varepsilon_M (2 + vol_F\%)} $ [2]

Figure S3 shows the experimental dielectric constants of BT/FSR

nanocomposites attached with expectation value of a series of theoretical models. A

phenomenon can be noticed that the EMT model fails to match with the experimental

value, while the Log and J-S model show good agreement.

Reference

[1] C. P. Wong, T. Marinis, Q. Jianmin and R. Yang, IEEE Transactions on Components and Packaging Technologies, 2000, 23, 680-683.

[2] S. Luo, Y. Shen, S. Yu, Y. Wan, W.-H. Liao, R. Sun and C.-P. Wong, Energy & Environmental Science, 2017, 10, 137-144.

[3] K. Yang, X. Huang, M. Zhu, L. Xie, T. Tanaka and P. Jiang, ACS Appl. Mater. Interfaces, 2014, 6, 1812-1822.