Electronic Supplementary Information (ESI)

Simple Mechanisms of CH₄ Reforming with CO₂ and H₂O on Supported Ni/ZrO₂ Catalyst

Hui Yang,^{†,‡,§} Hui Wang,^{†,‡,§} Lisha Wei,^{†,‡,§} Yong Yang,^{†,‡} Yong-Wang Li,^{†,‡} Xiao-dong Wen^{*,†,‡} and Haijun Jiao^{*,}

[†]State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.

[‡]National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China

SUniversity of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China

Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, 18059, Germany

Table of Contents

Micro-kinetics:

Figure S1. Stable adsorption structures and sequential adsorption energies of Ni_n (n = 1-13) on t-ZrO₂(101)

Figure S2. Energy profiles of possible pathways for CO_2 reforming of CH_4 on Ni_{13}/t - $ZrO_2(101)$ surface reported in literature along with the computational methods

Figure S3. Simplified Gibbs free energy profiles of CO₂ reforming of CH₄ on Ni₁₃/t-ZrO₂(101)

Figure S4. Energy surface of possible pathways for steam reforming of CH₄ on Ni₁₃/t-ZrO₂(101)

Figure S5. Simplified Gibbs free energy profiles of H₂O reforming of CH₄ on Ni₁₃/t-ZrO2(101)

Table S1. Forward reaction rate constant (s^{-1}) for elementary reactions in methane reforming on Ni/*t*-ZrO₂ catalyst under different conditions

Table S2. Computed activation energy (E_a , eV) and reaction energy (ΔH , eV) of individual elementary reactions on the Ni(111)

References

Figure S1. Stable adsorption structures of Ni_n (*n* = 1-13) on *t*-ZrO₂(101) with the sequential adsorption energy in parenthesis (white-blue, red and blue balls for Zr, O and Ni atoms, respectively)

Figure S2. Energy profile of possible pathway for CO₂ reforming of CH₄ on Ni₁₃/t-ZrO₂(101) from DFT calculation (0 K and 1 bar) with ZPE correction (black line) and Gibbs free energy profile (873 K and 1bar) (red line)

Figure S3. Simplified Gibbs free energy profile of CO₂ reforming of CH₄ on Ni₁₃/t-ZrO₂(101) under 873K with 1bar (red line) and 873K with 10bar (blue line) conditions, respectively.

Figure S4. Potential Energy surface of possible pathway for steam reforming of CH₄ on Ni₁₃/t-ZrO₂(101) from DFT calculation (0 K and 1 bar) with ZPE correction (black line) and the Gibbs free energy profile (873 K and 1bar) (red line)

Figure S5. Simplified Gibbs free energy profile of H_2O reforming of CH_4 on Ni_{13}/t - $ZrO_2(101)$ under 873K with 1bar (red line) and 873K with 10bar (blue line) conditions, respectively.

TableS1. Forward reaction rate constant (k, s ⁻¹) for elementar	y reactions in methane reforming	g on Ni/ <i>t</i> -ZrO ₂ catal	yst under different conditions.

Reactions	TS	<i>k</i> (873K; 1bar)	<i>k</i> (873K; 10bar)	<i>k</i> (873K; 30bar)	<i>k</i> (973K;10bar)
$CO_2 \rightarrow CO+O$	TS1	5.56×10 ⁰⁴	6.03×10 ⁰⁵	1.74×10 ⁰⁶	5.89×10 ⁰⁵
$O_{(1)} \rightarrow O_{(2)}$	TS2	1.18×10 ¹¹	1.18×10 ¹¹	1.18×10 ¹¹	1.75×10 ¹¹
$CH_4 \rightarrow CH_3 + H$	TS3	4.05×10 ⁰⁵	4.40×10 ⁰⁶	1.27×10 ⁰⁷	5.01×10 ⁰⁶
$CH_3 \rightarrow CH_2 + H$	TS4	9.56×10 ⁰⁹	9.56×10 ⁰⁹	9.56×10 ⁰⁹	1.62×10 ¹⁰
$CH_2 \rightarrow CH+H$	TS5	1.04×10 ¹¹	1.04×10 ¹¹	1.04×10 ¹¹	1.75×10 ¹¹
$CH \rightarrow C+H$	TS6	7.96×10 ¹⁰	7.96×10 ¹⁰	7.96×10 ¹⁰	1.38×10 ¹¹
$C_{(1)} \rightarrow C_{(2)}$	TS7	2.54×10 ⁰⁹	2.54×10 ⁰⁹	2.54×10 ⁰⁹	7.05×10 ⁰⁹
$C_{(2)}$ +O \rightarrow CO	TS8	9.74×10 ⁰⁶	9.74×10 ⁰⁶	9.74×10 ⁰⁶	5.39×10 ⁰⁷
$CH_3+O \rightarrow CH_3O$	TS9	1.01×10 ⁰¹	1.01×10 ⁰¹	1.01×10 ⁰¹	1.00×10 ⁰²
$CH_2+O \rightarrow CH_2O$	TS10	1.12×10 ⁻⁰¹	1.12×10 ⁻⁰¹	1.12×10 ⁻⁰¹	1.77×10 ⁰⁰
$CH+O \rightarrow CHO$	TS11	1.75×10 ⁻⁰²	1.75×10 ⁻⁰²	1.75×10 ⁻⁰²	7.68×10 ⁻⁰¹
$O+H \rightarrow OH$	TS12	1.65×10 ⁰⁷	1.65×10 ⁰⁷	1.65×10 ⁰⁷	8.68×10 ⁰⁷
$H_2O \rightarrow OH+H$	TS13	1.55×10 ⁰³	1.93×10 ⁰⁴	6.34×10 ⁰⁴	2.68×10 ⁰⁴
$OH \rightarrow O+H$	TS14	5.73×10 ⁰⁶	5.73×10 ⁰⁶	5.73×10 ⁰⁶	1.64×10 ⁰⁷
$H+H \rightarrow H_2$	TS15	1.54×10 ¹¹	1.54×10 ¹¹	1.54×10 ¹¹	2.81×10 ¹¹
$CH_4+O \rightarrow CH_3+OH$	TS16	1.63×10 ⁰²	1.77×10 ⁰³	5.12×10 ⁰³	1.04×10 ⁰⁴
$CH_4+O \rightarrow CH_3O+H$	TS17	1.93×10 ⁰⁴	2.09×10 ⁰⁵	6.03×10 ⁰⁵	5.23×10 ⁰⁵

Micro-kinetics

Example: The rate equation of dry reforming of CH₄

Such as shown in Figure S2 and Figure S4, the highest points in energy profile of reforming of CH_4 with CO_2 and H_2O at 873K are the transition state of CO_2 and CH_4 dissociation, respectively. For example: the micro-kinetic model of dry reforming of CH_4 with Gibbs free energy is listed as follows: firstly, CO_2 molecule adsorbs on the surface (Eq. 1); and then dissociation on site (Eq. 2);

 $CO_2 + * \rightarrow CO_2^*$ Eq. 1 $CO_2^* + * \rightarrow CO^* + O_{(1)}$ Eq. 2

The rate equation of Eq.2 can be expressed as equation (1):

$r = r_2 = k_2 [CO_2^*] [*]$ (1)

Where k_2 is the rate constant of CO₂ dissociation. Since all the other steps are assumed to be in quasi-equilibrium, so [CO_2^*] can be expressed as equations (3):

 $k_{+}[CO_{2}][*] = k_{-}[CO_{2}^{*}]$ (2)

$$\left[CO_{2}^{*}\right] = \frac{k_{+}[CO_{2}][*]}{k_{-}} = K_{1}[CO_{2}][*]$$
(3)

Where K1 is the equilibrium constant of CO_2 adsorption and desorption. So Substitute the equations (3) to (1), we can get the rate equation dry reforming of CH_4 , which the result is consistent with our thermodynamics.

$$r = k_2 K_1 [CO_2] [*]$$
 (4)

Table S2. Computed activation energy (E_a , eV) and reaction energy (ΔH , eV) of individual elementary reactions on the Ni(111) surface reported in literature along with the computational methods

Reactions	Ea	ΔH	Methods	
	0.48	-0.82	GGA-BEEF-vdw ¹	
	0.61	-1.04	GGA-PW91 ²	
	0.55	-0.36	GGA-PBE ³	
$CO_2 \rightarrow CO+O$	0.78	-1.02	GGA-PBE ^₄	
	0.45	-1.02	GGA-PBE ⁵	
	0.47	-1.08	GGA-PBE-D3 ⁶	
	1.21	0.55	GGA- BEEF-vdw ¹	
$CH_4 \rightarrow CH_3$ +H	1.14	0.49	GGA-RPBE ⁷	
	1.17	0.36	GGA-PBE ³	
	0.87	0.33	GGA- BEEF-vdw ¹	
$CH_3 \rightarrow CH_2 + H$	0.73	-0.22	GGA-RPBE ⁷	
	0.82	0.29	GGA-PBE ³	
	0.43	-0.16	GGA- BEEF-vdw ¹	
$CH_2 \rightarrow CH+H$	0.25	-0.55	GGA-RPBE ⁷	
	0.37	0.29	GGA-PBE ³	
	1.45	0.64	GGA- BEEF-vdw ¹	
$CH \rightarrow C+H$	1.17	0.30	GGA-RPBE ⁷	
	1.37	1.21	GGA-PBE ³	
$H_{2(g)} \rightarrow 2H$	0.25	-0.88	GGA-RPBE ⁷	
	1.00	-0.19	GGA- BEEF-vdw ⁸	
$H_2O \rightarrow OH+H$	0.97	-0.22	GGA-PBE ⁹	
	1.31	0.09	GGA- BEEF-vdw ⁸	
$OH \rightarrow O+H$	1.19	-0.17	GGA-PBE ⁹	
$CH_4+O \rightarrow CH_3+OH$	1.66	0.54	GGA- BEEF-vdw ¹	
$CH_3+O \rightarrow CH_3O$	0.94	-0.53	GGA-PBE ³	
$CH_2+O \rightarrow CH_2O$	0.78	-0.25	GGA-PBE ³	
	1.13	0.41	GGA- BEEF-vdw ¹	
$CH+O \rightarrow CHO$	0.80	-0.51	GGA-PBE ³	
	1.30	-1.72	GGA- BEEF-vdw ¹	
$C+O \rightarrow CO$	0.64	-2.51	GGA-PBE ³	

References

- 1 J. Niu, J. Ran and D. Chen, Appl. Surf. Sci., 2020, 513, 145840-145850.
- 2 M.-C. Silaghi, A. Comas-Vives and C. Copéret, ACS Catal., 2016, 6, 4501-4505.
- S.-G. Wang, X.-Y. Liao, J. Hu, D.-B. Cao, Y.-W. Li, J. Wang and H. Jiao, Surf. Sci., 2007, 601, 1271-1284. 3
- 4 S.-G. Wang, D.-B. Cao, Y.-W. Li, J. Wang and H. Jiao, J. Phys. Chem. B, 2006, 110, 9976-9983.
- 5 J. Huang, X. Li, X. Wang, X. Fang, H. Wang and X. Xu, J. CO₂ Util., 2019, 33, 55-63.
- 6 7 P. Wu, Y. Tao, H. Ling, Z. Chen, J. Ding, X. Zeng, X. Liao, C. Stampfl and J. Huang, ACS Catal., 2019, 9, 10060-10069.
- J. Li, E. Croiset and L. Ricardez-Sandoval, Chem. Phys. Lett., 2015, 639, 205-210.
- 8 J. Niu, Y. Wang, Y. Qi, A. H. Dam and D. Chen, *Fuel*, 2020, **266**, 117143-117154.
- 9 L. Zhu, C. Liu, X. Wen, Y.-W. Li and H. Jiao, *Catal. Sci. Technol.*, 2019, **9**, 199-212.