Electronic Supplementary Information (ESI)

Low-dimensional HfS₂ as SO₂ adsorbent and gas sensor: Effect of water and sulfur vacancies

Amina Bouheddadj,^{*a*} Tarik Ouahrani^{**a*}, Wilfried G. Kanhounnon ^{*b*}, Reda M. Boufatah^{*a*}, Sumeya Bedrane^{*c*}, Michael Badawi^{*d*}, and Ángel Morales-García^{**e*}

CONTENTS

- Analysis of water influence on 1T-HfS₂ monolayer
- Figure S1 : views of the most stable actives sites used in the adsorption of H_2O molecule, The H_2O molecule is depicted with blue and white spheres which correspond to oxygen and hydrogen atoms.
- Table S1 The calculated electronic contribution for the S/O exchange reaction from the reference surface Δ*E_n*. E₁ is the energy required to perform the nth exchange (eV), E₂ in the energy per exchanged oxygen atom Δ*E_n/n* (kJ mol⁻¹). Bridge (B), top on S atom (S) and top on Hf atom (Hf) and hexagon (H) positions represent the actives sites tested.
- **Figure S2** : View for the most stable geometry of $HfS_{2-x}O_x$ structures.
- Figure S3 : Side and top views of the most stable configuration of Sv-2D-HfS₂ absorbed with SO₂ molecule. The SO₂ molecule is depicted with yellow and blue spheres which correspond to sulfur and oxygen atoms.
- Figure S4 : The calculated band gap of (a) 2D-HfS₂, (b)HfS_{2-x}O_x and (c) Sv-2D-HfS₂ at HSE level. Noted that in (a) we also give in orange the plot of band structure at the HSE+SOC level.
- Figure S5 : Band structure plot at HSE06 level for (a) 2D-HfS₂@SO₂, (b) Sv-2D-HfS₂@SO₂ and (c)HfS_{2-x}O_x@SO₂
- Figure S6 : Partials densities of states of (a) T1-HfS₂, (b) Sv-2D-HfS₂ and (c) isolated SO₂ molecule at HSE level.
- Figure S7: NCI isosurfaces (s(r)=0.23 a.u.) of the (a)HfS_{2-x}O_x@H₂O (b) Sv-2D-HfS₂@H₂O structures.

2 | Journal Name, 2010, [vol], 1–8

^aLaboratoire de Physique Théorique, Université de Tlemcen 1300; E-mail: tarik_ouahrani@yahoo.fr

^bLaboratoire de Chimie Théorique et de Spectroscopie Moléculaire (LACTHESMO) Université dAbomey-Calavi, Bénin

^cLaboratory of Catalysis and Synthesis in Organic Chemistry, University of Tlemcen, BP 119, Tlemcen, Algeria

^d Université de Lorraine and CNRS, LPCT, UMR 7019, 54506 Vandoeuvre-lés-Nancy, France

^eDepartamentde Ciènciade Materials i Química Física & Institutde Química Teóricai Computacional (IQTCUB) Universitatde Barcelona, c/Martíi Franquès 111,08028 Barcelona, Spain

Analysis of water influence on 1T-HfS₂ monolayer

To simulate the effect of water, we consider that H_2O can depose oxygen atoms on the unsaturated hafnium atoms and modify the surface state according to the following equation ^{1,2}:

$$surface + nH_2O = surface - H_{2n}O_n \tag{1}$$

Sulfur/oxygen exchanges can take place on the stable reference surface

$$Surface - S_n + nH_2O = surface - O_n + nH_2S$$
⁽²⁾

Taking water as the oxygen source, successive exchanges were studied. Gibbs free energy of Reaction (1), for example, was computed according to:

$$\Delta_r G = \mu(Surface - O_n) - \mu(Surface - S_n) + n\mu(H_2S) - n\mu(H_2O)$$
(3)

Assuming that the difference between the chemical potential of solid phases can be approximated by the difference in their electronic energy ^{1,2}:.

$$\Delta_r G = \Delta_r G^0 + nRT \ln 10 \log \frac{(P(H_2 S))}{P(H_2 O))}$$
(4)

Here $\Delta_r G^0$ being equals to $\Delta E_n + \Delta \mu^0(T)^{3,4}$. ($\Delta \mu^0(T)$) includes the effect of temperature by accounting for the vibrational contribution of the system in the following equation :

$$\Delta \mu^{0}(T) = \Delta ZPE + \Delta H_{vib} + \Delta H_{rot} + \Delta H_{tr} - T(\Delta S_{vib} + \Delta S_{rot} + \Delta S_{tr})$$

and ΔE_n being the electronic energy contribution to the S/O exchange reaction defined as $\Delta E_n = E(Surface - O_n) - E(Surface - S_n) + nE(H_2O) + nH_2S$

This journal is © The Royal Society of Chemistry [year]

Figure S1 : views of the most stable actives sites used in the adsorption of H_2O molecule, The H_2O molecule is depicted with blue and white spheres which correspond to oxygen and hydrogen atoms.

Table S1 : The calculated electronic contribution for the S/O exchange reaction from the reference surface ΔE_n . E₁ is the energy required to perform the nth exchange (kJ mol⁻¹), E₂ in the energy per exchanged oxygen atom $\Delta E_n/n$ (kJ mol⁻¹). Bridge (B), top on S atom (S), top on Hf atom (Hf), hexagon (H) and (F) positions represent the actives sites tested.

S site	H site	B site	Hf site	F site
-12.6	-16.4	-17.4	-20.3	-16.4

Figure S2 : View for the most stable geometry of $HfS_{2-x}O_x$ structures.

Figure S3 : Side and top views of the most stable configuration of $Sv-2D-HfS_2$ absorbed with SO_2 molecule. The SO_2 molecule is depicted with yellow and blue spheres which correspond to sulfur and oxygen atoms.

Figure S4 : The calculated band gap of (a) 2D-HfS₂, (b)HfS_{2-x}O_x and (c) Sv-2D-HfS₂ at HSE level. Noted that in (a) we also give in orange the plot of band structure at the HSE+SOC level.

Figure S5 : Band structure plot at HSE06 level for (a) 2D-HfS₂@SO₂, (b) Sv-2D-HfS₂@SO₂ and (c)HfS_{2-x}O_x@SO₂

^{6 |} Journal Name, 2010, [vol], 1–8

Figure S6 : Partials densities of states of (a) T1-HfS₂, (b) Sv-2D-HfS₂ and (c) isolated SO₂ molecule at HSE level.

Figure S7 : NCI isosurfaces (s(**r**)=0.23 a.u.) of the (a)Sv-2D-HfS₂@H₂O (b) HfS_{2-x}O_x@H₂O structures.

References

- Badawi,M.; Paul, J.F; Cristol, S.; Payen, E.; Romero, Y.; Richard, F.; Brunet, S.; Lambert, D.; Portier, X.; Popov, A.; Kondratieva, E.; Goupil, J.M.; Fallah, J.El; Gilson, J.P.; Mariey, L.; Travert, A.; Maugée, F.; Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts: A combined experimental and DFT study, *J. Catal.* 2011, 282, 155-164 https://doi.org/10.1016/j.jcat.2011.06.006
- 2 F. Jensen, Introduction to Computational Chemistry (2007) 2nd Edition, John Wiley and Sons Ltd, page 433.
- 3 Loffreda, D. Theoretical insight of adsorption thermodynamics of multifunctional molecules on metal surfaces. *Surf. Sci.* **2006**, 600, 2103-2112. https://doi.org/10.1016/j.susc.2006.02.045
- 4 Badawi, M.; Cristol, S.; Paul, J. F.; Payen, E. DFT study of furan adsorption over stable molybdenum sulfide catalyst under HDO conditions. *C. R. Chimie.* **2009** 12, 754-761, https://doi.org/10.1016/j.crci.2008.10.023