Exploration of Chromophores for VCD Couplet in Biomolecularly Transparent Infrared Region

Tohru Taniguchi,*a Mohamad Zarif Mohd Zubir, ${ }^{\text {b }}$ Nobuyuki Haradac and Kenji Monde*a
${ }^{\text {a }}$ Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
${ }^{\mathrm{b}}$ Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
${ }^{\text {c }}$ Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan

Supporting Information

S2	Supporting Figures
S6	Synthesis of $\mathbf{2 , 3 , 4 , 5 , 2 a}$, and $\mathbf{6}$
S11	References
S12	NMR Spectra of 2a
S14	Optimized Cartesian Coordinates

Supporting Figures

Fig. S1 VCD spectra of enantiomeric pairs of 2-5 without "enantiomer correction" in the 2300-2000 cm^{-1} region. Measurement conditions are described in the caption of Figures 2 and 3.
(a)

(b)

6 (less stable conformer)
$\Delta E=3.12 \mathrm{kcal} / \mathrm{mol}$ (B3PW91/6-311++G(d,p))

Fig. S2 Less stable conformers of $\mathbf{5}$ and $\mathbf{6}$. (a) Three geometries with $\left(\phi_{1}, \phi_{2}\right)=\left(0^{\circ}, 0^{\circ}\right),\left(0^{\circ}, 180^{\circ}\right)$, and $\left(180^{\circ}\right.$, 180°) were submitted to DFT optimization. With B3PW91/6-311++G(d,p) level of optimization, all geometries were converged to a conformer with angles ϕ_{1} and ϕ_{2} of approximately 180° and $180^{\circ}\left(\theta=-23^{\circ}\right)$. Some of different DFT levels yielded the second most stable conformer with ϕ_{1} and ϕ_{2} of approximately 0° and 0° with ΔE of higher than $3.0 \mathrm{kcal} / \mathrm{mol}$. Conformers with $\left(\phi_{1}, \phi_{2}\right)=\left(0^{\circ}, 180^{\circ}\right)$ could not be obtained by all the tested calculation conditions. (b) The second most stable conformer of 6 predicted at DFT/B3PW91/6-311++G(d,p).

Fig. S3 Assignment of the chirality of (a) (-)-4 and (b) (+)-2a by comparison of calculated and observed VCD (top) and IR (bottom) spectra. Theoretical VCD spectrum for (R)-2a was almost superimposable to that for (R) $\mathbf{2 a} \cdot \mathbf{C H C l}_{3}$. Part of corresponding VCD and IR peaks are labelled, while nonmatching peaks are indicated by asterisks. Measurement conditions: $c 0.6 \mathrm{M}$ in CHCl_{3} (for (-)-4) or 0.3 M in CDCl_{3} (for (+)-2a), $l 50 \mu \mathrm{~m}$ (for $(-)-\mathbf{4})$ or $100 \mu \mathrm{~m}$ (for (+)-2a), corrected by solvent spectra. Calculation conditions: B3PW91/6-311++G(d,p). Frequency scaling factor: 0.97 (for $(S)-\mathbf{4})$ or 0.98 (for (R)-2a). Part of observed spectra are omitted due to strong solvent absorption.

Fig. S4 VCD (top) and IR (bottom) of measured (black) for (S)-2 and calculated (red for harmonic DFT and blue for anharmonic DFT) spectra $(S)-\mathbf{2} \cdot \mathbf{2} \mathrm{CHCl}_{3}$. Part of corresponding VCD and IR peaks of observed spectra and anharmonically calculated spectra are labelled, while nonmatching peaks are indicated by asterisks. Both the anharmonic and harmonic VCD spectra were qualitatively similar to observed one, whereas only anharmonically calculated IR spectrum well reproduced the observed anharmonic signals in the region above $1600 \mathrm{~cm}^{-1}$ (peaks 18-21). Measurement conditions: $c 0.3 \mathrm{M}$ in $\mathrm{CHCl}_{3}, l 50 \mu \mathrm{~m}$, corrected by solvent spectra. Calculation conditions: B3PW91/6-311++G(d,p). Harmonic calculated spectra are scaled by a factor of 0.98 , while anharmonic ones are unscaled. Part of observed spectra are omitted due to strong solvent absorption.
(a)
-(S)-2 $\cdot 2 \mathrm{CHCl}_{3}:$ B3PW91/6-311++G(d,p)
.......(S)-2: B3PW91/6-311++G(d,p)
-(S)-2: B3LYP/6-31+G(d)
.......(S)-2 $\cdot 2 \mathrm{CHCl}_{3}$: B3LYP/6-31+G(d)
-(S)-2: B3LYP/6-31+G(d)/PCM(chloroform)
$\cdots . . .(S)-2 \cdot 2 \mathrm{CHCl}_{3}$: B3LYP/aug-cc-pVDZ

(b)
-(S)-2 $\cdot 2 \mathrm{CHCl}_{3}:$ B97D/6-31+G(d)/PCM(chloroform)(S)-2: B97D/6-31+G(d)/PCM(chloroform)
-(S)-2 $2 \mathrm{CHCl}_{3}$: B97D/jun-cc-pVDZ/PCM(chloroform)
......(S)-2: B97D/jun-cc-pVDZ/PCM(chloroform)

Fig. S5 Predicted VCD patterns of (S)-2 by anharmonic DFT using (a) B3PW91 or B3LYP, or (b) B97D functionals. All spectra were scaled by a factor of 0.967 .

Fig. S6 Observed VCD and IR spectra of 6 in DMSO- $h_{6}-\mathrm{H}_{2} \mathrm{O}$ (9:1) mixed solvent. Measurement conditions: c $0.04 \mathrm{M}, l 50 \mu \mathrm{~m}$, corrected by solvent spectra.

Fig. S7 VCD (top) and IR (bottom) of measured and calculated spectra for 6. Agreement between the experimental and theoretical spectra supported the validity of the molecular geometry used for spectral calculations. Measurement conditions: $c 0.3 \mathrm{M}^{2}$ in $\mathrm{CHCl}_{3}, l 50 \mu \mathrm{~m}$, corrected by solvent spectra. Calculation conditions: harmonic DFT at B3PW91/6-311++G(d,p). Frequency scaling factor: 0.97.

Fig. S8 Comparison of the VCD and IR (bottom) spectra observed for (S) $\mathbf{- 5}$ and $\mathbf{6}$ and those calculated using harmonic DFT at B3PW91/6-31G(d). The observed spectra are the same as those shown in Figure 2 and 4. Frequency scaling factor: 0.936 (for (S)-5) and 0.931 (for 6).

Synthesis of 2, 3, 4, 5, 2a, and 6

General Procedures

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra were recorded on a Varian Inova instrument at $25{ }^{\circ} \mathrm{C}$. Chemical shift values (δ) are reported in ppm relative to tetramethylsilane. The following abbreviations were used for signal multiplicities: $\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{m}=$ multiplet. Optical rotations were measured on a JASCO P-1020 polarimeter at the sodium D-line under ambient temperature, and reported as $[\alpha]_{\mathrm{D}}$ (concentration in grams $/ 100 \mathrm{~mL}$ solvent). Enantioseparation of $\mathbf{2}$ and $\mathbf{4}$ was performed by using a uf-3020SZB2 pump (Denso Sangyo, Japan) equipped with a Shimamura (Japan) YRU-880 midget UV-RI detector, using a Daicel CHIRALFLASH ${ }^{\circledR}$ IC column ($3.0 \mathrm{~cm} \phi \times 10 \mathrm{~cm}$). Enantioseparation of 2a was conducted on two JASCO PU-2086 intelligent pumps equipped with a JASCO MX-2080-31 solvent mixing module on a PU-2075 intelligent UV/Vis detector, using a Daicel CHIRALPAK ${ }^{\circledR}$ IB column (1.0 $\mathrm{cm} \phi \times 25 \mathrm{~cm}$). Spectroscopic grade CHCl_{3} and CDCl_{3} were purchased from Wako Pure Chemical Industries and Cambridge Isotope Laboratories, respectively. Purchased chemicals were used without further purification. Synthesis of $(S)-\mathbf{1}$ and $(R) \mathbf{- 1}$ is reported previously. ${ }^{[1]}$

Synthesis of (S)-2 and (R)-2

Conversion from (\pm)-2, 2^{\prime}-dibromo-1, 1^{\prime}-binaphthyl to (\pm)-2 was carried out in a similar manner to a reported procedure. ${ }^{[2]}(\pm)-2,2^{\prime}$-dibromo-1, 1^{\prime}-binaphthyl ($206 \mathrm{mg}, 499 \mu \mathrm{~mol}$) in THF $(10 \mathrm{~mL})$ was added n butyllithium in hexane ($2.5 \mathrm{M}, 0.48 \mathrm{~mL}$) dropwise under N_{2} at $-78^{\circ} \mathrm{C}$. After $30 \mathrm{mins}, \mathrm{N}_{2}$ was replaced with CO_{2}, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h and then gradually brought to rt overnight. The reaction was quenched with 2 M HCl aq and then extracted using $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, and then dried over MgSO_{4}. After removal of the solvent, the mixture was purified by silica-gel column chromatography (hexane-EtOAc-AcOH $=95: 5: 1$ to $80: 20: 1$), which afforded $(\pm)-1,1^{\prime}$-binaphthyl-2,2'dicarboxylic acid ${ }^{[3]}$ ($105 \mathrm{mg}, 61 \%$).

The diacid (105 mg) was added $\mathrm{SOCl}_{2}(2 \mathrm{~mL})$ and the mixture was refluxed. After 15 mins , the mixture was dried under reduced pressure. The residue was dissolved in THF (1 mL) and then bubbled with NH_{3}
gas at $0^{\circ} \mathrm{C}$ for 10 mins . After removal of the solvent, the residue was dissolved in $\mathrm{DCM}(1 \mathrm{~mL})$ and added $\mathrm{Tf}_{2} \mathrm{O}(0.25 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL})$ and the mixture was stirred at $0^{\circ} \mathrm{C}$. After 40 mins , the mixture was diluted with EtOAc , washed sequentially with 2 M HCl aq and brine, and then dried over MgSO_{4}. After removal of the solvent, the mixture was purified by silica-gel column chromatography (hexane-EtOAc $=$ $8: 1$ to $1: 1$), which afforded (\pm) $-2^{[3]}(34 \mathrm{mg}, 37 \%$ from diacid $)$.

Enantioseparation of (\pm)-2 was carried out on a CHIRALFLASH ${ }^{\circledR}$ IC column ($3.0 \mathrm{~cm} \phi \times 10 \mathrm{~cm}$) using hexane- $\mathrm{EtOAc}=4: 1$, which led to the first-eluted $(R)-(-)-2$ and the second-eluted $(S)-(+)-2 \cdot(R)-(-)-2:[\alpha]_{\mathrm{D}}$ -43.8 (c 1.0, $\left.\mathrm{CHCl}_{3}\right) ; \operatorname{lit}^{[4]}[\alpha]_{\mathrm{D}}-70.5\left(c \quad 1, \mathrm{CHCl}_{3}\right) .(S)-(+)-2:[\alpha]_{\mathrm{D}}+44.3\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{lit}^{[4]}[\alpha]_{\mathrm{D}}+68.6(c$ $\left.1.54, \mathrm{CHCl}_{3}\right)$.

Synthesis of $(S)-\mathbf{3}$ and $(R)-\mathbf{3}$

(S)-3 was synthesized in a similar manner to a reported procedure. ${ }^{[5]}$ Formic acid (500 $\left.\mu \mathrm{L}\right)$ was added to $\mathrm{Ac}_{2} \mathrm{O}(60 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$ and the solution was stirred at $60^{\circ} \mathrm{C}$ for 30 mins . To this solution, THF $(0.5 \mathrm{~mL})$ and (S)-1, 1^{\prime}-binaphthyl-2,2'-diamine ($32 \mathrm{mg}, 113 \mu \mathrm{~mol}$) in THF $(0.5 \mathrm{~mL})$ were successively added at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $60^{\circ} \mathrm{C}$. After 3 h , the mixture was diluted with EtOAc , washed sequentially with sat NaHCO_{3} aq and brine, and then dried over MgSO_{4}. After removal of the solvent, the mixture was purified by silica-gel column chromatography (hexane-EtOAc $=1: 3$ to $1: 19$), which afforded (S)-1,1'-binaphthyl-$2,2^{\prime}$-diformamide containing some impurities (23 mg). Without further purification, the diformamide (23 $\mathrm{mg})$ and $\mathrm{Et}_{3} \mathrm{~N}(150 \mu \mathrm{~L})$ in $\mathrm{DCM}(0.7 \mathrm{~mL})$ was added a 0.3 mL DCM solution of triphosgene (33 mg) dropwise at $0{ }^{\circ} \mathrm{C}$ and stirred at rt. After 1.5 h , the solvent was removed and the residue was purified by silica-gel column chromatography (hexane-EtOAc $=3: 1$ to $1: 3$), which afforded $(S)-3^{[5]}(10 \mathrm{mg}, 29 \%$ from diamine).
$(R)-3^{[6]}$ was prepared from $(R)-1,1^{\prime}$-binaphthyl-2,2'-diamine using a similar procedure.

Synthesis of (S)-4 and (R)-4

Conversion from (\pm)-2, 2^{\prime}-dibromo-1, 1^{\prime}-binaphthyl to $(\pm)-\mathbf{4}$ was carried out in a similar manner to a reported procedure. ${ }^{[7]}(\pm)-2,2^{\prime}$-dibromo- $1,1^{\prime}$-binaphthyl $(418 \mathrm{mg}, 1.01 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added n butyllithium in hexane ($2.5 \mathrm{M}, 0.96 \mathrm{~mL}$) dropwise under N_{2} at $-78^{\circ} \mathrm{C}$. After 30 mins , the mixture was added DMF (2.3 mL), stirred at $-78^{\circ} \mathrm{C}$ for 40 mins , and then gradually brought to rt overnight. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed with sat $\mathrm{NH}_{4} \mathrm{Cl}$ aq. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. All organic layers were combined and dried over MgSO_{4}. After removal of the solvent, the mixture was purified by silica-gel column chromatography (hexane-EtOAc $=10: 1$ to $4: 1$), which afforded (\pm)-2,2'-diformyl-1,1'-binaphthyl ${ }^{[7]}(85 \mathrm{mg}, 27 \%)$.

The dialdehyde ($85 \mathrm{mg}, 274 \mu \mathrm{~mol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(85 \mathrm{mg})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added Bestmann-Ohira reagent $(165 \mu \mathrm{~L})$ and stirred at rt for overnight. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed with sat $\mathrm{NH}_{4} \mathrm{Cl}$ aq. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. All organic layers were combined and dried over MgSO_{4}. After removal of the solvent, the mixture was purified by silica-gel column chromatography (hexane-EtOAc $=25: 1$ to 20:1), which afforded $(\pm)-4^{[7]}(27 \mathrm{mg}, 33 \%)$.

Enantioseparation of (\pm)-4 was carried out on a CHIRALFLASH ${ }^{\circledR}$ IC column ($3.0 \mathrm{~cm} \phi \times 10 \mathrm{~cm}$) using hexane-EtOAc $=50: 1$, which led to the first-eluted $(-)-4$ and the second-eluted $(+)-4$. The absolute configurations of these enantiomers were determined to be $(S)-(-)-4$ and $(R)-(+)-4$ by using VCD spectroscopy (Fig. S3a). (S)-(-)-4: $[\alpha]_{\mathrm{D}}-28.4\left(c 1.0, \mathrm{CHCl}_{3}\right) .(R)-(+)-4:[\alpha]_{\mathrm{D}}+27.2\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$.

Synthesis of $(S)-5$ and (R)-5

(S)-5 was synthesized in a similar manner to a reported procedure. ${ }^{[8]}$ (S)-1,1'-binaphthyl-2,2'-diamine $(142 \mathrm{mg}, 499 \mu \mathrm{~mol})$ in 2 M HCl aq $(3.5 \mathrm{~mL})$ was added $\mathrm{NaNO}_{2}(105 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and stirred at $0^{\circ} \mathrm{C}$.

After 1 h , the mixture was added $\mathrm{NaN}_{3}(135 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ dropwise at $0{ }^{\circ} \mathrm{C}$ and stirred at rt for overnight. The mixture was diluted with EtOAc, washed sequentially with sat NaHCO_{3} aq and brine, and then dried over MgSO_{4}. After removal of the solvent, the mixture was purified by silica-gel column chromatography (hexane-EtOAc $=99: 1$), which afforded $(S)-5(146 \mathrm{mg}, 87 \%)$. Its NMR data were virtually identical with those reported for $(\pm)-5 \cdot{ }^{[8]}(S)-(-)-5:[\alpha]_{\mathrm{D}}-42.1\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
$(R)-\mathbf{5}^{[9]}$ was prepared from $(R)-1,1^{\prime}$-binaphthyl-2, 2^{\prime}-diamine using a similar procedure.

Synthesis of (S)-2a and (R)-2a

Conversion from (\pm)-2,2'-dibromo-1,1'-binaphthyl to (\pm)-1,1'-binaphthyl-2-carboxylic acid was carried out in a similar manner to a reported procedure. ${ }^{[10]}(\pm)-2,2^{\prime}$-dibromo-1, 1^{\prime}-binaphthyl ($412 \mathrm{mg}, 1.00 \mathrm{mmol}$) in THF (10 mL) was added n-butyllithium in hexane ($2.6 \mathrm{M}, 0.46 \mathrm{~mL}$) dropwise under N_{2} at $-78{ }^{\circ} \mathrm{C}$. After 1 h , the mixture was added $\mathrm{MeOH}(1 \mathrm{~mL})$ and stirred for 10 mins at $-78^{\circ} \mathrm{C}$. The mixture was diluted with CHCl_{3}, washed with brine, and then dried over MgSO_{4}. After removal of the solvent, the residue was dissolved in THF (10 mL) and added n-butyllithium in hexane ($2.6 \mathrm{M}, 0.58 \mathrm{~mL}$) dropwise under N_{2} at $-78^{\circ} \mathrm{C}$. After $15 \mathrm{mins}, \mathrm{N}_{2}$ was replaced with CO_{2}, and the mixture was gradually brought to rt over 1 h . The reaction mixture was diluted with CHCl_{3}, washed with 2 M HCl aq, and then dried over MgSO_{4}. After removal of the solvent, the mixture was purified by silica-gel column chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}=15\right.$: $1)$, which afforded (\pm)-1,1'-binaphthyl-2-carboxylic acid ${ }^{[10]}$ ($165 \mathrm{mg}, 55 \%$ in 2 steps).

The following conversion from monoacid to (\pm)-2a was performed in a similar manner to the synthesis of (\pm)-2. The monoacid (160 mg) was added $\mathrm{SOCl}_{2}(3 \mathrm{~mL})$, and the mixture was refluxed. After 10 mins , the mixture was dried under reduced pressure. The residue was dissolved in THF (2 mL) and then bubbled with NH_{3} gas at $0{ }^{\circ} \mathrm{C}$ for 10 mins . After removal of the solvent, the residue was dissolved in $\mathrm{DCM}(2 \mathrm{~mL})$ and added $\mathrm{Tf}_{2} \mathrm{O}(0.8 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ and the mixture was stirred at $0^{\circ} \mathrm{C}$. After 40 mins , the mixture was diluted with EtOAc, washed sequentially with 2 M HCl aq, sat NaHCO_{3} aq and brine, and then dried over MgSO_{4}. After removal of the solvent, the mixture was purified by silica-gel column chromatography (hexane-EtOAc $=15: 1$), which afforded (\pm)-2a ${ }^{[11]}(80 \mathrm{mg}, 54 \%$ from monoacid $)$.

Enantioseparation of (\pm)-2a was carried out on a CHIRALPAK ${ }^{\circledR}$ IB column ($1.0 \mathrm{~cm} \phi \times 25 \mathrm{~cm}$) using hexane-EtOH $=95: 5$, which led to the first-eluted $(-)-\mathbf{2}$ at $\mathrm{t}_{1}=10.7 \mathrm{~min}$ and the second-eluted $(S)-(+)-\mathbf{2}$ at $\mathrm{t}_{2}=11.4 \mathrm{~min}$. The separation factor α was calculated as 1.1 , where $\mathrm{t}_{0}=4.0 \mathrm{~min}$ was used. The absolute configurations of these enantiomers were determined to be $(S)-(-)-\mathbf{2 a}$ and $(R)-(+)-\mathbf{2 a}$ by using VCD spectroscopy (Fig. S3b). (S)-(-)-2a: [$\alpha]_{\mathrm{D}}-112\left(c 1.0, \mathrm{CHCl}_{3}\right) .(R)-(+)-\mathbf{2 a}:[\alpha]_{\mathrm{D}}+106\left(c 1.0, \mathrm{CHCl}_{3}\right)$; ; lit ${ }^{[12]}$ for (+)-2a: $[\alpha]_{\mathrm{D}}+89.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

Synthesis of 6

Methyl α-D-glucopyranoside ($1.95 \mathrm{~g}, 10.0 \mathrm{mmol}$) in DMF (35 mL) was added benzaldehyde dimethoxy acetal (2 mL) and a catalytic amount of $p-\mathrm{TsOH} \bullet \mathrm{H}_{2} \mathrm{O}$ and stirred at rt overnight. The mixture was diluted with CHCl_{3}, washed sequentially with sat NaHCO_{3} aq and brine, and dried over MgSO_{4}. After removal of the solvent, the mixture was purified by recrystallization with EtOH and hexane, which afforded methyl $4,6-O$-benzylidine- α-D-glucopyranoside ($2.14 \mathrm{~g}, 76 \%$). Its ${ }^{1} \mathrm{H}$ NMR spectrum was virtually identical with a reported one. ${ }^{[13]}$

The 4,6 -protected sugar ($148 \mathrm{mg}, 524 \mu \mathrm{~mol}$) in DCM (3 mL) was added pyridine ($900 \mu \mathrm{~L}$) and trifluoromethanesulfonic anhydride ($220 \mu \mathrm{~L}$) and stirred at rt . After 30 mins , the mixture was diluted with DCM, washed sequentially with water and brine, and then dried over MgSO_{4}. After removal of the solvent, the residue was dissolved in DMF $(10 \mathrm{~mL})$, added $\mathrm{NaN}_{3}(374 \mathrm{mg})$ and $\mathrm{NH}_{4} \mathrm{Cl}(18 \mathrm{mg})$ and stirred overnight at $80^{\circ} \mathrm{C}$. The mixture was brought to rt , diluted with EtOAc, washed sequentially with water and brine, and then dried over MgSO_{4}. After removal of the solvent, the mixture was purified by silica-gel column chromatography (hexane-EtOAc $=10: 1$ to $5: 1$), which afforded methyl 2,3-diazido-2,3-deoxy-4,6-O-benzylidine- α-D-altropyranoside $\boldsymbol{6}^{[14]}\left(78 \mathrm{mg}, 45 \%\right.$ in 2 steps). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.51-7.47(\mathrm{~m}, \mathrm{ArH}, 2 \mathrm{H})$, $7.41-7.34(\mathrm{~m}, \mathrm{ArH}, 3 \mathrm{H}), 5.62(\mathrm{~s}, \mathrm{C} H \mathrm{Ph}, 1 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{H}-1, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.25(\mathrm{~m}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-5,2 \mathrm{H})$, $4.10(\mathrm{dd}, \mathrm{H}-3, J=3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, \mathrm{H}-4, J=9.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, \mathrm{H}-2, J=2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.79 (dd, H-6b, $J=10.1,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, \mathrm{OMe}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 137.0(\mathrm{Ar}), 129.5$ (Ar), 128.6 (Ar), 126.3 (Ar), 102.5 (CHPh), 99.04 (C-1), 75.7 (C-4), 69.1 (C-6), 61.3 (C-2), 58.9 (C-5), 58.5 (C$3), 56.1(\mathrm{OMe}) .[\alpha]_{\mathrm{D}}+20.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

References

1. Taniguchi, T.; Monde, K. J. Am. Chem. Soc. 2012, 134, 3695.
2. Hoshi, T.; Nozawa, E.; Katano, M.; Suzuki, T.; Hagiwara, H. Tetrahedron Lett. 2004, 45, 3485.
3. Zhao, L.; Qi, D.; Wang, K.; Wang, T.; Han, B.; Tang, Z.; Jiang, J. Sci. Rep. 2016, 6, 28026.
4. Vondenhof, M.; Mattay, J. Chem. Ber. 1990, 123, 2457.
5. Bartolome, C.; Garcia-Cuadrado, D.; Ramiro, Z.; Espinet, P. Inorg. Chem. 2010, 49, 9758.
6. Yamamoto, Y.; Hagiwara, T.; Yamazaki, H. Inorg. Chim. Acta 1986, 115, L35.
7. Schaller, G. R.; Topić, F.; Rissanen, K.; Okamoto, Y.; Shen, J.; Herges, R. Nature Chem. 2014, 6, 608.
8. Takeda, Y.; Okazaki, M.; Minakata, S. Chem. Commun. 2014, 50, 10291.
9. Huang, W.; Zhang, Y. C.; Jin, R.; Chen, B. L.; Chen, Z. Organometallics 2018, 37, 3196.
10. Aissaoui, R.; Nourry, A.; Coquel, A.; Dao, T. T. H.; Derdour, A.; Helesbeux, J.-J.; Duval, O.; Castanet, A.-S.; Mortier, J. J. Org. Chem. 2012, 77, 718.
11. Tnay, Y. L.; Chen, C.; Chua, Y. Y.; Zhang, L.; Chiba, S. Org. Lett. 2012, 14, 3550.
12. Liu, J.; Zheng, H.-K.; Yao, C.-Z.; Sun, B.-F.; Kang, Y.-B. J. Am. Chem. Soc. 2016, 138, 3294.
13. Chen, C.-T.; Weng, S.-S.; Kao, J.-Q.; Lin, C.-C.; Jan, M.-D. Org. Lett. 2005, 7, 3343.
14. Franconetti, A.; Álvarez, E.; Cabrera-Escribano, F. Synlett 2017, 28, 201.

Optimized Cartesian Coordinates

(S)-1 optimized at B3PW91/6-311++G(d,p)

1	H	3.056315	-1.811085	-1.809211
2	C	3.23911	-1.040381	-1.067836
3	C	3.647711	0.964473	0.874535
4	C	2.18821	-0.554295	-0.290983
5	C	4.502108	-0.503553	-0.868653
6	C	4.699983	0.492165	0.095888
7	C	2.37867	0.43011	0.675403
8	H	5.34191	-0.849747	-1.461827
9	H	5.694585	0.903688	0.237235
10	H	3.819538	1.735929	1.618788
11	C	0.775288	-0.96728	-0.314594
12	C	1.097099	0.745556	1.401669
13	H	1.146286	0.385347	2.435398
14	H	0.911197	1.822759	1.434209
15	C	-0.000004	-0.000085	0.620273
16	O	0.280272	-1.889203	-0.918533
17	C	-0.775253	0.967238	-0.314506
18	C	-1.097138	-0.745812	1.401538
19	H	-0.911278	-1.823029	1.433878
20	H	-1.14631	-0.385794	2.435334
21	C	-2.188194	0.554316	-0.290939
22	C	-4.700021	-0.492055	0.095824
23	C	-3.239074	1.040553	-1.067725
24	C	-2.378699	-0.430198	0.675327
25	C	-3.647768	-0.964516	0.874404
26	C	-4.502099	0.503769	-0.868598
27	H	-3.056242	1.811338	-1.809006
28	H	-3.819631	-1.736052	1.618565
29	H	-5.341887	0.850081	-1.461723
30	H	-5.694643	-0.90354	0.23713
31	O	-0.280199	1.889213	-0.918333

(S)-2•2CHCl ${ }_{3}$ optimized at B3PW91/6-311++G(d,p)

32	C	-3.50042	3.215517	1.95017
33	C	0.96486	-0.213971	1.581117
34	C	-0.964759	-0.213683	-1.581781
35	N	-1.876001	-0.922825	-1.545631
36	N	1.876309	-0.922834	1.544739
37	H	3.745567	-1.983495	0.930791
38	H	-3.744991	-1.983752	-0.931355
39	C	4.662501	-2.435124	0.562457
40	C	-4.661792	-2.435415	-0.562732
41	Cl	5.841738	-1.129971	0.297551
42	Cl	4.285661	-3.270683	-0.960323
43	Cl	5.241645	-3.577752	1.792107
44	Cl	-4.284396	-3.271124	0.959828
45	Cl	-5.241385	-3.577922	-1.792282
46	Cl	-5.840929	-1.130284	-0.297269

(S)-3 optimized at B3PW91/6-311++G(d,p)

1	H	-2.455887	2.013152	-2.737559
2	C	-2.271808	1.31614	-1.928835
3	H	-4.238795	0.504311	-1.912451
4	C	-3.249227	0.480235	-1.467331
5	C	-0.680588	0.421756	-0.300049
6	C	-2.99413	-0.42328	-0.406999
7	C	-0.984555	1.282117	-1.34086
8	C	-1.694857	-0.454611	0.185451
9	C	-3.996596	-1.29473	0.081719
10	H	-0.472949	-1.394509	1.703314
11	C	-3.732928	-2.163409	1.110666
12	H	-4.982165	-1.261866	-0.372546
13	H	-4.510014	-2.825374	1.477954
14	C	-2.450183	-2.196303	1.696374
15	H	-2.249562	-2.884462	2.510818
16	C	-1.455748	-1.363861	1.246595
17	C	0.984555	1.282107	1.34087
18	C	0.680591	0.421754	0.30005
			S 16	

19	C	3.249228	0.480228	1.467334
20	C	1.694861	-0.454606	-0.185456
21	C	2.271808	1.316127	1.928845
22	C	2.994134	-0.423278	0.406995
23	C	1.455754	-1.363848	-1.246609
24	H	2.455887	2.013131	2.737575
25	H	4.982171	-1.26186	0.372534
26	H	4.238796	0.504302	1.912455
27	C	2.45019	-2.196283	-1.696395
28	H	0.472955	-1.394492	-1.703328
29	H	2.249573	-2.884435	-2.510845
30	C	3.732936	-2.163392	-1.110686
31	H	4.510022	-2.825352	-1.477981
32	C	3.996603	-1.294722	-0.081732
33	N	-0.021469	2.138518	-1.836528
34	C	0.777508	2.875829	-2.282543
35	N	0.021466	2.138501	1.836545
36	C	-0.77755	2.875752	2.282587

(S)-4 optimized at B3PW91/6-311++G(d,p)

1	C	3.751591	-2.173134	-1.047506
2	C	3.990231	-1.320274	0.001142
3	C	2.978418	-0.451714	0.475706
4	C	1.695163	-0.467763	-0.150899
5	C	1.482495	-1.361302	-1.231855
6	C	2.484672	-2.191921	-1.667902
7	H	4.182318	0.445791	2.03169
8	H	4.535626	-2.83412	-1.402377
9	H	4.963024	-1.299446	0.483546
10	C	3.205378	0.433763	1.55786
11	C	0.671649	0.404279	0.322635
12	H	0.512154	-1.379511	-1.715082
13	H	2.302704	-2.867949	-2.497012
14	C	0.930926	1.25545	1.390622
15	C	2.214847	1.262065	2.003814
16	H	2.387866	1.939635	2.832199
17	C	-0.671654	0.404272	-0.322642
			S 17	

18	C	-1.695172	-0.467753	0.150916
19	C	-0.930927	1.255412	-1.390655
20	C	-1.482508	-1.361262	1.231897
21	C	-2.978426	-0.451718	-0.475691
22	C	-2.214847	1.262015	-2.003848
23	C	-2.484689	-2.191865	1.667967
24	H	-0.512168	-1.379461	1.715126
25	C	-3.990243	-1.32026	-0.001104
26	C	-3.205381	0.433729	-1.557871
27	H	-2.387862	1.939562	-2.832252
28	C	-3.751607	-2.173092	1.047568
29	H	-2.302725	-2.86787	2.497096
30	H	-4.963036	-1.299442	-0.48351
31	H	-4.182322	0.445748	-2.031703
32	H	-4.535645	-2.834065	1.402457
33	C	0.071188	2.133123	-1.895397
34	C	-0.071186	2.133177	1.895341
35	C	0.895113	2.885537	-2.352399
36	H	1.631808	3.546048	-2.74333
37	C	-0.89509	2.885617	2.352339
38	H	-1.63137	3.546797	2.74292

(S)-5 (the most stable conformer) optimized at B3PW91/6-311++G(d,p)

1	C	1.120316	0.976708	1.211665
2	C	0.708671	0.094952	0.226666
3	C	3.382269	0.144423	1.116809
4	C	1.658588	-0.800971	-0.343645
5	C	2.464279	1.001424	1.657762
6	C	3.013525	-0.776929	0.107559
7	C	1.304097	-1.726425	-1.35824
8	H	2.763395	1.703016	2.430177
9	H	4.978771	-1.641205	-0.112231
10	H	4.411869	0.165848	1.46078
11	C	2.237946	-2.579915	-1.891669
12	H	0.278642	-1.752538	-1.709402
13	H	1.945899	-3.280492	-2.667325
14	C	3.575265	-2.554898	-1.442658

15	H	4.302658	-3.234654	-1.873872
16	C	3.951458	-1.669969	-0.463403
17	C	-1.120179	0.976669	-1.211774
18	C	-0.708705	0.095027	-0.226609
19	C	-3.382232	0.144738	-1.116931
20	C	-1.658796	-0.800647	0.343836
21	C	-2.464103	1.001535	-1.657969
22	C	-3.01369	-0.776479	-0.107466
23	C	-1.304505	-1.725965	1.358609
24	H	-2.763078	1.703034	-2.430521
25	H	-4.979093	-1.640386	0.112362
26	H	-4.411806	0.166229	-1.460977
27	C	-2.238522	-2.579227	1.892123
28	H	-0.279077	-1.752173	1.709846
29	H	-1.946626	-3.279717	2.667914
30	C	-3.575805	-2.554081	1.443028
31	H	-4.303332	-3.233645	1.874319
32	C	-3.951802	-1.669262	0.463591
33	N	0.137518	1.840016	1.740882
34	N	0.452245	2.643231	2.611955
35	N	0.601353	3.42842	3.415039
36	N	-0.137172	1.839875	-1.74084
37	N	-0.451534	2.642638	-2.612482
38	N	-0.600507	3.427595	-3.415805

$(R)-\mathbf{2 a} \cdot \mathrm{CHCl}_{3}$ optimized at B3PW91/6-311++G(d,p)

1	H	-0.102918	1.838565	3.509255
2	C	0.265621	1.812676	2.489345
3	H	-0.305248	3.826185	2.055794
4	C	0.153428	2.915322	1.683045
5	C	1.332928	0.558985	0.705397
6	C	0.624984	2.885678	0.348132
7	C	1.226295	1.692031	-0.156962
8	C	0.510421	4.011829	-0.504117
9	H	2.133086	0.774678	-1.895549
10	C	0.964959	3.966781	-1.797578
11	H	0.050121	4.914622	-0.113844

12	H	0.868417	4.835587	-2.440312
13	C	1.554655	2.786878	-2.298586
14	H	1.906892	2.756478	-3.324491
15	C	1.682075	1.678053	-1.499312
16	C	1.13531	-1.751927	-0.21914
17	C	1.942864	-0.711192	0.220557
18	C	3.040694	-3.155504	-0.686343
19	C	3.357337	-0.891119	0.214394
20	C	1.686159	-2.980107	-0.673595
21	C	3.909464	-2.126171	-0.246212
22	C	4.241188	0.123897	0.661972
23	H	1.01752	-3.764925	-1.007747
24	H	5.727792	-3.235208	-0.597438
25	H	3.466311	-4.091409	-1.034087
26	C	5.599467	-0.071744	0.648503
27	H	3.826612	1.059964	1.017977
28	H	6.261892	0.714822	0.994244
29	C	6.142723	-1.290295	0.189279
30	H	7.2185	-1.431652	0.184341
31	C	5.314942	-2.294328	-0.246646
32	C	-0.285039	-1.6047	-0.231459
33	N	-1.437456	-1.527226	-0.257667
34	H	-3.584155	-0.985488	-0.136351
35	C	-4.632656	-0.709299	-0.062533
36	Cl	-4.843826	0.858993	-0.870914
37	Cl	-5.046727	-0.598247	1.66315
38	Cl	-5.586595	-1.97549	-0.866271
39	C	0.85719	0.631713	1.996349
40	H	0.938846	-0.235727	2.643547

6 (the most stable conformer) optimized at B3PW91/6-311++G(d,p)

1	O	2.091929	-1.524906	0.424825
2	C	0.373087	-0.130032	-0.501439
3	C	2.721907	0.678207	-0.496892
4	C	1.247051	1.117718	-0.473777
5	C	3.046496	-0.488966	0.466762
6	C	0.7585	-1.070951	0.631142

7	H	0.559505	-0.647659	-1.456419
8	H	0.673657	-0.542915	1.587596
9	H	3.977255	-0.978686	0.144433
10	H	1.060945	1.716398	-1.372615
11	H	3.346542	1.529976	-0.209853
12	O	3.205436	0.056433	1.73727
13	C	3.741178	-0.851034	2.687709
14	H	3.070835	-1.699173	2.856979
15	H	3.86392	-0.292636	3.615401
16	H	4.719198	-1.228038	2.359584
17	N	2.989185	0.28094	-1.892114
18	N	4.16648	0.146599	-2.206053
19	N	5.210524	-0.002431	-2.619823
20	N	1.026959	1.92552	0.731634
21	N	0.091322	2.718589	0.696726
22	N	-0.716233	3.50418	0.800669
23	O	-0.990168	0.229994	-0.401908
24	C	-0.18787	-2.258439	0.609974
25	H	-0.018619	-2.851964	-0.301397
26	H	-0.051785	-2.905403	1.477731
27	O	-1.524464	-1.778549	0.654852
28	C	-1.820369	-0.922074	-0.423116
29	C	-3.254839	-0.490577	-0.33372
30	C	-5.920341	0.310166	-0.173882
31	C	-4.133079	-0.765191	-1.377986
32	C	-3.714886	0.187899	0.794915
33	C	-5.043059	0.586663	0.872924
34	C	-5.464718	-0.366328	-1.29988
35	H	-3.776741	-1.293737	-2.257537
36	H	-3.028846	0.400552	1.606751
37	H	-5.396668	1.115997	1.751719
38	H	-6.14368	-0.583955	-2.117818
39	H	-6.957534	0.623259	-0.110546
40	H	-1.631871	-1.461953	-1.367987

