Electronic properties and interface contact of graphene/CrSiTe₃

van der Waals heterostructures

Li Chen,^{*a,c} Chuan Jiang,^{*b} Maoyong Yang,^a Dongchao Wang,^c Changmin Shi,^c Hongmei Liu,^c Guangliang Cui,^c Xiaolong Li,^c Jiakuo Shi^a

^aInternational School of photoelectronic engineering, Qilu University of Technology, Jinan 250353, China ^bTech Center, CRRC Qingdao Sifang Rolling Stock Research Institute Co., Ltd, Shanghai 200333, China ^cInstitute of Condensed Matter Physics, Linyi University, Shandong 276000, China

Table S1(a)	Magnetic moment of atoms in the of graphene/CrSiTe ₃ at $d=3.19$ Å		
direction	Cr	Si	Те
In plane	3.38 μ _B	$0.010\mu_{ m B}$	$0.102 \mu_{ m B}$
Z direction	$0.02~\mu_{ m B}$	$0.001 \mu_{ m B}$	$-0.010\mu_{ m B}$

 Table S1(b) Magnetic moment of atoms in the of graphene/CrSiTe₃ at d=2.75 Å

 direction
 Cr
 Si
 Te

 In plane
 $2.82 \, \mu_{\rm B}$ $0.001 \mu_{\rm B}$ $0.062 \mu_{\rm B}$

 Z direction
 $-0.68 \, \mu_{\rm B}$ $-0.004 \mu_{\rm B}$ $-0.028 \, \mu_{\rm B}$

Fig. S1 (a) The calculated total energy of the Gr/CrSiTe₃ heterostructure as a function of the lattice constant of CrSiTe₃; (b) The calculated total energy of the Gr/CrSiTe₃ heterostructure as a function of the interfacial distance; (c) Ab initio molecular dynamics simulations of Gr/CrSiTe₃ at 300 K; (d) and (e) the final structure after 10 ps, showing that the Graphene/CrSiTe₃ heterostructure remains stable.

Fig. S2 (a) Band structures of graphene; (b) Band structures of CrSiTe₃ ML with SOC interaction and (c) The spin-polarized band structure of the CrSiTe₃ ML, red for spin-up and blue for spin-down.

Fig. S3 (a) Charge density difference of the graphene/CrSiTe₃ at the interfacial distance d=2.75 Å. The isosurface refers to isovalues of 0.001 e Å⁻³. (b) Schematic diagram of the built-in electric field at the graphene/CrSiTe₃ interface.

Fig. S4 Diagrammatic illustration of the p-type and n-type Schottky and Ohmic contact at the interface region.

Fig. S5 The SBH of the graphene/CrSiTe₃ as a function of the external electric field. The n-type Schottky barrier (Φ_{Bn}) noted in black color is the energy difference between the E_{CBM} and the E_F, while the p-type Schottky barrier (Φ_{Bp}) noted in red color is the energy difference between the E_F and the E_{VBM}.