Supplementary Information for

One-step Functionalization of Mildly and Strongly Reduced Graphene Oxide with Maleimide: An Experimental and Theoretical Investigation of the Diels-Alder [4+2] Cycloaddition Reaction

Alfonso Ferretti,¹ Sourab Sinha,² Luca Sagresti,^{2,3} Esteban Araya-Hermosilla,⁴ Mirko Prato,⁵ Virgilio Mattoli,⁴ Andrea Pucci,^{5,6} and Giuseppe Brancato^{2,3*}

- 1. Università di Pisa, Dipartimento di Ingegneria Civile ed Industriale, Largo Lucio Lazzarino 2, I-56124 Pisa, Italy.
- 2. Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy and CSGI.
- 3. Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy.
- 4. Center for Materials Interfaces, Istituto Italiano di Tecnologia Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
- 5. Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
- 6. Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy.
- 7. CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy.

Corresponding authors:

E-mail: giuseppe.brancato@sns.it

Content

Figure 1: Raman spectra of prGO before and after sonication

Figure 2: FT-IR spectra of maleimide and maleic anhydride.

Figure 3: Top and side views of the product models 1aP, 1bP, and 1cP.

Figure 4: Top and side views of the product models 1eP, 1dP, and 1eP.

Figure 5: Top and side views of the product models 2P, 3P, 4P, 5P, and 6P.

Table 1: Geometrical parameters of the optimized geometry of the maleimide-graphene adducts.

Figure 6: Maleimide-graphene geometrical parameters description.

Figure 7: Spin density isosurface of the (a,b) 2R and (c,d) 2P vacancy radical systems.

Table 2: Transition state geometrical parameters.

Figure 8: Side view of the model 1bTS, 2TS, 3TS, 4TS, 8TS, 9TS, and 10TS.

Table 3: Reaction and activation enthalpies and free energies.

Table 4: Geometrical parameters of the optimized transition states of the maleimide-graphene adducts.

Figure 9: Correlation between maleimide-graphene bond length and binding enthalpy.

Figure 10: CFF analysis of models 1R and 2R.

Figure 11: CFF analysis of models 3R and 4R.

Figure 12: CFF analysis of models 5R and 6R.

Figure 13: CFF analysis of models 7R and 8R.

Figure 14: CFF analysis of models 9R and 10R.

Figure 1 Raman spectra of prGO before and after sonication.

Figure 2 ATR-FT-IR spectra of the maleimide derivative (black line) and maleic anhydride (red line).

Figure 3 Top and side view of the model (a, b) 1aP, (c, d) 1bP, and (e, f) 1cP.

Figure 4 Top and side views of the non-covalent interaction surface for the model (a, b) 1eP, (c, d) 1dP, and (e, f) 1eP. In a) and b), the non-covalent interaction isosurface is depicted as obtained using the MultiWFN software.

Figure 5 Top and side views of the model (a, b) 2P, (c, d) 3P, (e, f) 4P, (g, h) 5P, and (i, j) 6P.

Table 1: Geometrical parameters of the optimized geometry of the maleimide-graphene adducts. The definition of the geometrical parameters is reported in Figure 5. Angles are in degree, bonds in Å.

Graphene Product Model	Dihedral Angle	Maleimide Tilting Angle	Maleimide C=C Bond Length	Maleimide- Graphene Bond Length
1Pa Central	28.2	25.9	1.53	1.65
1Pb External	30.5	26.9	1.54	1.58
1Pc Internal	29	26	1.53	1.63
1Pd Non-Covalent Border			1.33	3.2
1Pe Non-Covalent Center			1.33	3.19
2P Vacancy Radical	36.7	53.9	1.53	1.54
3P Vacancy External H	36.8	56.9	1.53	1.54
4P Double Vacancy (585 divacancy)	37.8	55	1.53	1.56
5P Stone Wales Defect	28.1	33	1.57	1.6
6P Nitrogen Doped	31.6	28.2	1.54	1.6
7P Double Epoxy Central	30.1	28	1.56	1.59
8P Double Epoxy External	31.5	31.2	1.55	1.58
9P Tetra-Epoxy	33.7	25.3	1.56	1.58
10P Double Hydroxyl Epoxy	30.8	26.7	1.57	1.58

Figure 6 (a, b) Tilting angle between maleimide molecular axis (i.e., the vector connecting the C=C middle point to the carbon atom belonging to the methyl group) and local graphene plane (i.e., three adjacent carbon atoms are used to identify the local plane). Note that it was considered the complementary angle between maleimide molecular axis and the normal to the local graphene plane. (c, d) Orthogonal and rotated view of the four carbon atom coordinates used to evaluate the local graphene dihedral angle (i.e., improper dihedral), represented in red.

Figure 7 Spin density isosurface of the (a,b) 2R and (c,d) 2P vacancy radical systems.

Figure 8 Side view of the model (a) 1bTS, (b) 2TS, (c) 3TS, (d) 4TS, (e) 8TS, (f) 9TS, and (g) 10TS.

Table 2: Solvent (i.e., chloroform and acetonitrile) and temperature effects on the reaction enthalpy (Δ H) of all systems. Thermal effects are evaluated as the difference Δ E(T=323.15K) - Δ E(T=0K) (including zero-point energy). Chloroform and acetonitrile effects are evaluated as the difference Δ E(T=0K, solvent) - Δ E(T=0K, gas-phase).

Model	Thermal corr. (323.15K)	Solvent effects (chloroform)	Solvent effects (acetonitrile)
1a Central	-0.7	5.0	
1b External Border	-0.6	1.0	1.1
1c Internal Border	-0.5	3.0	
1d Non-Covalent Border	-0.7	1.2	
1e Non-Covalent Center	0.6	1.3	1.2
2 Vacancy Radical	-0.6	0.1	
3 Vacancy Hext	-1.0	1.4	2.3
4 Double Vacancy	-0.4	-0.1	
5 Stone Wales	-0.9	-1.2	
6 Nitrogen Doped	-1.1	2.7	
7a Double Epoxy Central	-1.1	1.0	6.0
8 Double Epoxy External	-0.9	0.7	
9 Tetra Epoxy	-1.0	0.9	1.4
10 Double Hydroxyl Epoxy	-0.9	0.8	

Reaction	Ac en	tivation 1thalpy	Bi	nding thalpy	Ac fre	ctivation e energy	Bi free	nding energy
	Gas	Solvent	Gas	Solvent	Gas	Solvent	Gas	Solvent
$1R \rightarrow 1Pb$	5.4	4.8	-12.2	-11.4	21.6	23.8	3.4	7.3
$1R \rightarrow 1Pe$			-16	-14.6			-3.4	-0.1
$2R \rightarrow 2P$	27.3	27.5	-8	-8	41.8	43.2	6.3	8.8
$3R \rightarrow 3P$	21.3	21.7	-29.3	-28.1	36.7	38.1	-13.4	-10.4
$4R \rightarrow 4P$	16.6	17	-9.1	-9.2	31.5	33	5.7	7
$7R \rightarrow 7Pa$			-37.9	-36.9	13.4	15.6	-20.5	-18.4
$8R \rightarrow 8P$	4.1		-15.5	-15	19	16.4	0	2.6
$9R \rightarrow 9P$	3.6	4.9	-36.1	-35.3	19.3	21.9	-19.3	-16.7
$10R \rightarrow 10P$	3.5	3.9	-28.9	-28.1	19.1	21.6	-12.7	-9.8

Table 3: Reaction enthalpy and Gibbs free energy (in kcal/mol) for all relevant models.

Transition State Model	Dihedral Angle	Maleimide Tilting Angle	Maleimide C=C Bond Length	Maleimide- Graphene Bond Length
1bTS External	9.5	18.8	1.47	1.66-2.54
2TS Vacancy Radical	10.1	44.9	1.5	1.6-2.27
3TS Vacancy External H	6.3	42.1	1.48	1.64-2.38
4TS Double Vacancy	17.7	32.5	1.42	2.01-2.07
8TS Double Epoxy External	1.6	22.8	1.41	1.96-2.85
9TS Tetra-Epoxy	11.7	21.2	1.4	2.23-2.37
10TS Double Hydroxyl Epoxy	9.6	28.5	1.49	1.63-2.57

Table 4: Geometrical parameters of the optimized transition states of the maleimide-graphene adducts. Angles are in degree, bonds in Å.

Figure 9: Correlation between maleimide-graphene bond length (Table 1) and binding enthalpy. Products obtained from defect-free and defective graphene models (black dots) show a good degree of correlation (linear fitting represented as a dashed line). On the contrary, oxygen-functionalized adduct models (red dots) do not show any apparent correlation.

a)			b)			
1R Pristine Graphene	Local Nucleophilicity	Local Electrophilicity		4	C12	1 C10
C1	2.31	1.52			I an	V
C2	-2.22	-2.28			C7 C8	C9
C3	-0.68	-0.63		T	Ý	
C4	-0.68	-0.63				
C5	-2.22	-2.28			C6	CC4
C6	-1.47	-1.52			A SI	X
C7	-1.96	-1.88			C1	CC3
C8	-1.23	-1.15		1	U	T
C9	-0.44	-0.31			C2	
C10	-1.30	-1.06				
C11	-13.08	-14.03				
C12	-1.65	-1.57				
c)			d)			
2R Vacancy	Local	Local		\checkmark		
Radical	Nucleophilicity	Electrophilicity			C7	
C1	-4.24	-4.18	L.		C8 🦲	C6
C2	-1.25	-1.52				
C3	-1.42	-1.25		0	Le	I _{C5}
C4	0.00	0.01			Ĩ.	
C5	-0.74	-0.55		C10		C4
C6	-0.27	-0.19		CII	9	
C7	-2.10	-2.31		CIIC		003
C8	-0.74	-0.37				
C9	-5.92	-6.56			CIZ	42
C10	-0.61	-1.11			\sim	
C11	-4.68	-4.61				
C12	-0.66	-0.62				

Figure 10 Fukui Analysis reported with images showing the selected atoms for models (a, b) 1R and (c, d) 2R.

b)

3R Vacancy	Local	Local
External H	Nucleophilicity	Electrophilicity
C1	-14.48	-9.25
C2	-1.09	-0.59
C3	-0.83	-1.39
C4	0.18	-1.16
C5	7.77	-10.63
C6	0.26	-0.06
C7	6.77	-19.51
C8	-0.73	-1.33
C9	-14.86	-22.11
C10	0.10	-1.56
C11	-17.17	-11.86
C12	0.10	-0.59

c)

d)

4R Double Vacancy	Local Nucleophilicity	Local Electrophilicity
C1	-0,56	-3,59
C2	-0,27	-0,05
C3	-2,35	-6,06
C4	-0,50	-3,17
C5	-1,85	-6,16
C6	-2,26	-0,27
C7	-11,69	0,16
C8	-1,50	-1,32
С9	-0,81	-2,00
C10	-1,32	-0,85
C11	-2,50	-0,10
C12	-4,05	-1.08
C13	-0,98	0,08
C14	-0,35	-1,92

Figure 11 Fukui Analysis reported with images showing the selected atoms for models (a, b) 3R and (c, d) 4R.

a)

b)

5R Stone Wale Defect	s Local Nucleophilicity	Local Electrophilicity
C1	-3,13	-4,74
C2	-0,95	-1,01
C3	-0,72	-0,42
C4	-3,43	-2,13
C5	-3,43	-2,13
C6	-0,72	-0,42
C7	-7,12	-1,83
C8	-0,34	-0,28
С9	-3,53	-4,71
C10	-0,85	-1,20

c)		C	d)
6R Nitrogen Substitutional	Local Nucleophilicity	Local Electrophilicity	
N1	-4,22	-0,80	
C2	-1,86	-2,42	
C3	-0,39	-0,32	
C4	-0,65	-0,52	
C5	-2,68	-0,30	
C6	-0,42	0,05	
C7	-2,29	-0,14	
C8	0,12	-1,12	
C9	-0,85	-0,16	
C10	-0,98	-2,40	
C11	-1,36	-0,53	
C12	-6,28	-0,05	C12
C13	-1,16	-0,65	

Figure 12 Fukui Analysis reported with images showing the selected atoms for models (a, b) 5R and (c, d) 6R.

a)

a)		b)
7R Double	Local	Local	
Epoxy	Nucleophilicity	Electrophilicity	
<u>C1</u>	-7.87	-5.52	
C2	-0.52	-0.49	
C3	-3.06	-2.51	YYYYY
C4	-0.44	-0.51	
C5	-8.42	-6.27	
C6	-1.18	-0.66	CIO CE
C7	-0.20	-0.39	
C8	-1.72	-1.97	C11 C5
С9	-1.21	-0.65	
C10	-0.72	-0.52	C12 C12 C4
C11	0.46	-0.05	C12 C2 C2
C12	0.34	0.24	
C13	-2.53	-2.11	YYYYY
c)		d	1)
8R Double Ej	poxy Local Nucleophilic	Local ity Electrophilici	
Cl	Nucleophine		
C1 C2	-0,62	-2.23	
C3	-0.73	-1.04	
C4	-0.86	0.17	
C5	-1,31	-0,33	
C6	-0,74	-1,91	
C7	-1,98	-2,70	
C8	-0,76	-2,12	C8 C0 C4
C9	-0,78	-0,03	
C10	-0,82	-0,29	🔶 🕂 C9 🏩 🛕 🛛 🚻 C3 🗍
C11	-1,29	-0,72	

Figure 13 Fukui Analysis reported with images showing the selected atoms for models (a, b) 7R and (c, d) 8R.

-7,27

-0,61

-14,95

-1,16

C12

C13

C10

C11

C12

C2

C13

a)		ł	o)
9R Tetra epoxy	Local Nucleophilicity	Local Electrophilicity	
C1	-0,13	-0,15	
C2	-1,51	-1,62	$\gamma \gamma \gamma \gamma \gamma \gamma \gamma$
C3	-0,32	-0,46	
C4	-0,56	-0,22	
C5	-1,65	-1,05	6 C7 _ C5
C6	-0,12	-0,02	C6
C7	-0,39	-0,36	C8
C8	-0,23	-0,51	
C9	-0,41	-0,20	
C10	-0,44	-0,38	
C11	-0,45	-0,64	
C12	-0,64	-0,75	C11 C15
C13	-0,36	-0,36	
C14	-0,03	0,13	C12 C14
C15	-0,49	-0,32	
C16	-1,44	-2,06	
c)		(d)
10R Double	Local	Local	
Hydroxy Epoxy	Nucleophilicity	Electrophilicity	
C1	-5,65	-2,12	C8 C7
C2	-2,50	-5,12	
C3	-2,07	-1,60	
C4	-142,12	-6,59	C10 - C1 - C6
C5	-2,03	-3,42	
C6	-1,20	-4,19	
C7	-4,67	-2,93	C12
C8	0,15	0,18	
C9	-1,46	-0,94	
C10	-0,80	-0,49	
C11	-1,90	-0,99	$\gamma \gamma \gamma \gamma \gamma \gamma \gamma$
C12	0,52	-0,17	
C13	-1,27	0,20	

Figure 14 Fukui Analysis reported with images showing the selected atoms for models (a, b) 9R and (c, d) 10R.