Electronic Supplementary Information: Spectroscopic Detection of Gas-Phase HOSO₂

Masakazu Nakajima*,[†] and Yasuki Endo*,[‡]

Department of Basic Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan, and Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 300098, Taiwan

E-mail: nakajima@bunshi.c.u-tokyo.ac.jp; endo@nctu.edu.tw

List of Contents

- # Table S-I: Observed line frequencies of HOSO_2 and their assignments
- # Table S-II: Observed line frequencies of DOSO_2 and their assignments
- # A model calculation for the C constant of HOSO_2

^{*}To whom correspondence should be addressed

[†]The University of Tokyo

[‡]National Yang Ming Chiao Tung University

N'	K'_a	K_c'	J'	F'	N''	K_a''	K_c''	<i>J</i> ″	F''	obs. freq. ^{a} (MHz)	oc. (kHz)
0 ⁻ +	-0^{+}										
1	0	1	1.5	1	0	0	0	0.5	0	14040.362	1
			1.5	2				0.5	1	14041.186	-1
			1.5	1				0.5	1	14047.273	-0
			0.5	0				0.5	1	14068.138	-3
			0.5	1				0.5	0	14071.815	-0
			0.5	1				0.5	1	14078.727	-2
$0^+ \star$	-0^{-}										
1	0	1	1.5	1	0	0	0	0.5	0	14000.242	2
			1.5	2				0.5	1	14001.116	-0
			1.5	1				0.5	1	14007.153	1
			0.5	0				0.5	1	14032.247	3
			0.5	1				0.5	0	14035.743	1
			0.5	1				0.5	1	14042.654	1
$0^+ \star$	-0^{+}										
1	1	0	1.5	1	0	0	0	0.5	0	18490.943	-2
			1.5	2				0.5	1	18494.666	-0
			1.5	1				0.5	1	18497.856	-2
			0.5	1				0.5	0	18524.771	1
			0.5	1				0.5	1	18531.688	5
			0.5	0				0.5	1	18533.505	2
$0^- \leftrightarrow$	-0^{-}										
1	1	0	1.5	1	0	0	0	0.5	0	18490.923	0
			1.5	2				0.5	1	18494.646	-0
			1.5	1				0.5	1	18497.835	-1
			0.5	1				0.5	0	18524.750	-0
			0.5	1				0.5	1	18531.658	-6
			0.5	0				0.5	1	18533.485	2
$0^+ \epsilon$	-0^{+}										
1	1	1	0.5	1	0	0	0	0.5	0	14294.803^{b}	-4
			1.5	2				0.5	1	14301.727^{c}	-3
			0.5	1				0.5	1	14301.727^{c}	7
			1.5	1				0.5	0	14302.518	2
			0.5	0				0.5	1	14306.723	-1

Table S-I: Observed line frequencies of HOSO_2 and their assignments.

	<i>K'</i>	K'	.]′	F'	N''	<i>K</i> ″	<i>K</i> ″		<i>F''</i>	obs. freq. ^a (MHz)	$o_{\rm c}$ (kHz)
0	$\leftarrow 0^{-}$	c		-		a	c		-		
1	1	1	0.5	1	0	0	0	0.5	1	14290.696	-1
			1.5	1				0.5	0	14292.530	2
			1.5	2				0.5	1	14293.195	-1
			0.5	0				0.5	1	14294.018	-0
0^{+} .	$\leftarrow 0^+$										
1	1	0	1.5	2	1	0	1	1.5	2	4469.240^{d}	2
			1.5	1				1.5	2	4472.429^{d}	0
			0.5	1				1.5	2	4506.256^{d}	1
0^{-} .	$\leftarrow 0^{-}$										
1	1	0	1.5	2	1	0	1	1.5	2	4477.772^{d}	0
			1.5	1				1.5	2	4480.963^{d}	2
			0.5	1				1.5	2	4514.788^{d}	-0
0^+ .	$\leftarrow 0^+$										
2	0	2	2.5	3	1	1	1	1.5	2	23838.367	0
			2.5	2				1.5	1	23835.740	2
			2.5	2				1.5	2	23843.456^{c}	18
			2.5	2				0.5	1	23843.456^{c}	8
			1.5	1				0.5	0	23853.588	1
			1.5	2				1.5	1	23856.791	-3
			1.5	1				1.5	2	23858.595^{c}	13
			1.5	1				0.5	1	23858.595^{c}	3
			1.5	2				1.5	2	23864.501^{c}	8
			1.5	2				0.5	1	23864.501^{c}	-2
0^{-} .	$\leftarrow 0^{-}$										
2	0	2	2.5	2	1	1	1	1.5	1	23848.683	-3
			2.5	3				1.5	2	23849.910	-2
			2.5	2				1.5	2	23854.930	0
			2.5	2				0.5	1	23857.430	1
			1.5	1				0.5	0	23868.320	2
			1.5	2				1.5	1	23868.771	-2
			1.5	1				0.5	1	23871.643	3
			1.5	2				1.5	2	23875.015	-2
			1.5	2				0.5	1	23877.519	2
0^{-} .	$\leftarrow 0^+$										

Table S-I (continue)

N'	K'_a	K'_c	J'	F'	N''	K_a''	K_c''	J''	F''	obs. freq. ^{a} (MHz)	oc. (kHz)
2	1	2	2.5	2	1	1	1	1.5	1	23860.820	-0
			2.5	3				1.5	2	23863.482	-2
			2.5	2				0.5	1	23868.537	7
			1.5	1				0.5	0	23875.868	-2
			1.5	2				1.5	1	23879.173	-1
$0^+ \star$	-0^+										
2	1	2	1.5	1	1	0	1	0.5	1	24089.312	2
			1.5	2				0.5	1	24095.353	1
			1.5	1				0.5	0	24099.721	-0
			2.5	2				1.5	1	24111.537	-1
			2.5	3				1.5	2	24112.478	-3
			2.5	2				1.5	2	24117.571	-3
			1.5	1				1.5	1	24124.812	-0
			1.5	2				1.5	2	24136.893	3
0- ∢	-0^{-}										
2	1	2	1.5	1	1	0	1	0.5	1	24103.866	1
			1.5	2				0.5	1	24109.875	0
			1.5	1				0.5	0	24114.451	-2
			2.5	2				1.5	1	24122.976	1
			2.5	3				1.5	2	24124.023	-4
			2.5	2				1.5	2	24129.063	1
			1.5	1				1.5	1	24135.323	2
			1.5	2				1.5	2	24147.416	-1
$0^+ \star$	-0^{-}										
2	0	2	1.5	2	1	0	1	0.5	1	24087.495	1
			2.5	2				1.5	1	24097.895	1
			2.5	3				1.5	2	24098.908	-1
$0^+ \star$	$= 0^+$										
2	1	1	2.5	3	1	0	1	1.5	2	36730.629^d	9
			2.5	2				1.5	2	36735.491^d	6
			1.5	1				1.5	2	36809.840^{d}	0
			1.5	2				1.5	2	36814.715^d	-2
$0^{-} \star$	-0^{-}										
2	1	1	2.5	3	1	0	1	1.5	2	36730.254^{d}	-5
			2.5	2				1.5	2	36735.137^d	-9

Table S-I (continue)

N7/	171	171	7/	D /	NT//	τ <i>Ζ</i> //	τ <i>Ζ</i> Π	T//	/		(1 TT)
IN'	K_a'	K_c	J'	F'	$N^{\prime\prime}$	K_a''	K_c''	J''	<i>F</i> "	obs. freq." (MHz)	0.—c. (kHz)
			1.5	1				1.5	2	36807.299^{d}	0
			1.5	2				1.5	2	36812.222^{d}	-1
0- •	$\leftarrow 0^+$										
2	2	0	2.5	3	1	0	1	1.5	2	41506.713^{d}	5
			2.5	2				1.5	2	41509.260^{d}	5
			1.5	1				0.5	1	41524.184^{d}	3
			1.5	2				0.5	1	41524.308^{d}	1
			1.5	2				1.5	2	41565.848^{d}	3
$0^+ \cdot$	$\leftarrow 0^{-}$										
2	2	0	2.5	3	1	0	1	1.5	2	41466.716^{d}	-3
			2.5	2				1.5	2	41469.264^{d}	-4
			1.5	1				0.5	1	41488.188^{d}	-1
			1.5	2				0.5	1	41488.311^{d}	-3
			1.5	2				1.5	2	41525.849^{d}	-7
$0^+ \star$	$\leftarrow 0^+$										
2	2	1	2.5	3	1	1	1	1.5	2	37267.319^{e}	35
			2.5	2				1.5	2	37268.240^{d}	-1
			1.5	2				1.5	2	37289.471^d	-6
			1.5	1				1.5	2	37290.396^{e}	19
0^{-}	$\leftarrow 0^{-}$										
2	2	1	2.5	3	1	1	1	1.5	2	37266.958^d	-6
			2.5	2				1.5	2	37267.822^{d}	1
			1.5	2				1.5	2	37287.151^d	5
			1.5	1				1.5	2	37287.884^{d}	7

Table S-I (continue)

^{*a*} Lines without superscript letter were observed by FTMW spectroscopy, and estimated error of 3 kHz are given in the least-squares analysis using the spfit program.

 b Observed by the FTMW-MW double resonance technique. Estimated error of 20 kHz is given in the least-squares analysis.

 c Overlapping peak. Not included in the least-squares analysis.

 d Observed by the FTMW-MW double resonance technique. Estimated error of 6 kHz is given in the least-squares analysis.

 e Not included in the least-squares analysis.

N'	K'_a	K'_c	J'	F'	N''	K_a''	K_c''	<i>J</i> ″	F''	obs. freq. ^{a} (MHz)	oc. (kHz)
$0^+ \star$	$\leftarrow 0^+$						-				
1	0	1	1.5	1.5	0	0	0	0.5	0.5	13329.790^{b}	2
			1.5	2.5				0.5	1.5	13330.285	1
			1.5	0.5				0.5	0.5	13330.470^{b}	4
			1.5	1.5				0.5	1.5	13331.519^{c}	1
			1.5	0.5				0.5	1.5	13332.195^{c}	-1
			0.5	0.5				0.5	0.5	13334.197	-3
			0.5	0.5				0.5	1.5	13335.927^{c}	-3
			0.5	1.5				0.5	0.5	13336.382	-1
			0.5	1.5				0.5	1.5	13338.080^{b}	-33
$0^- \epsilon$	$\leftarrow 0^{-}$										
1	0	1	1.5	2.5	0	0	0	0.5	1.5	13330.228	-1
			1.5	1.5				0.5	1.5	13331.463^{c}	0
			1.5	0.5				0.5	1.5	13332.138^{c}	-4
			0.5	0.5				0.5	0.5	13334.147	2
			0.5	0.5				0.5	1.5	13335.879^{c}	4
			0.5	1.5				0.5	0.5	13336.332	3
			0.5	1.5				0.5	1.5	13338.080^{b}	22
$0^+ \star$	$\leftarrow 0^+$										
1	1	0	1.5	2.5	1	1	1	0.5	1.5	3828.473^{d}	1
			1.5	2.5				1.5	1.5	3856.959^d	-4
			1.5	2.5				1.5	2.5	3857.794^{d}	-1
$0^- \star$	$\leftarrow 0^{-}$										
1	1	0	1.5	2.5	1	1	1	0.5	1.5	3828.519^{d}	-1
			1.5	2.5				1.5	1.5	3857.021^{d}	10
			1.5	2.5				1.5	2.5	3857.845^{d}	2
$0^+ \star$	$\leftarrow 0^+$										
2	0	2	2.5	2.5	1	0	1	1.5	1.5	23416.465^{c}	-18
			2.5	1.5				1.5	0.5	23416.500^{c}	-4
			2.5	3.5				1.5	2.5	23416.634^{c}	4
			2.5	1.5				1.5	1.5	23417.184^{c}	2
			2.5	2.5				1.5	2.5	23417.719^{c}	2
			1.5	1.5				0.5	1.5	23425.528^{c}	3
			1.5	2.5				0.5	1.5	23426.715^{c}	6

Table S-II: Observed line frequencies of DOSO_2 and their assignments.

N'	K'_a	K'_c	J'	F'	N''	K_a''	K_c''	J''	F''	obs. freq. ^{a} (MHz)	oc. (kHz)
			1.5	0.5				0.5	0.5	23426.894^{c}	3
			1.5	1.5				0.5	0.5	23427.709^{c}	1
			1.5	1.5				1.5	1.5	23432.070^{b}	-51
			1.5	2.5				1.5	2.5	23434.500^{b}	-39
$0^- \epsilon$	$\leftarrow 0^{-}$										
2	0	2	2.5	2.5	1	0	1	1.5	1.5	23416.390^{c}	-3
			2.5	1.5				1.5	0.5	23416.416^{c}	2
			2.5	3.5				1.5	2.5	23416.541^{c}	1
			2.5	1.5				1.5	1.5	23417.094^{c}	2
			2.5	2.5				1.5	2.5	23417.630^{c}	3
			1.5	1.5				0.5	1.5	23425.435^{c}	0
			1.5	2.5				0.5	1.5	23426.617^{c}	-2
			1.5	0.5				0.5	0.5	23426.801^{f}	-1
			1.5	1.5				0.5	0.5	23427.620^{c}	1
			1.5	1.5				1.5	1.5	23432.070^{b}	39
			1.5	2.5				1.5	2.5	23434.500^{b}	51
$0^+ \star$	$\leftarrow 0^+$										
2	1	2	1.5	0.5	1	1	1	0.5	0.5	22796.190	1
			1.5	1.5				0.5	1.5	22796.850^{e}	4
			1.5	1.5				0.5	0.5	22796.945	-1
			1.5	2.5				0.5	1.5	22797.949	2
			2.5	3.5				1.5	2.5	22806.675^{c}	1
			2.5	2.5				1.5	1.5	22806.891	0
			2.5	1.5				1.5	0.5	22807.030^{c}	1
			2.5	1.5				1.5	1.5	22807.569	-2
			2.5	2.5				1.5	2.5	22807.724	1
			1.5	2.5				1.5	2.5	22827.256^{f}	-14
$0^- \epsilon$	$\leftarrow 0^{-}$										
2	1	2	1.5	0.5	1	1	1	0.5	0.5	22796.095	-1
			1.5	1.5				0.5	1.5	22796.754	0
			1.5	1.5				0.5	0.5	22796.850^{e}	-3
			1.5	2.5				0.5	1.5	22797.855	0
			2.5	3.5				1.5	2.5	22806.581	0
			2.5	2.5				1.5	1.5	22806.799^{c}	0
			2.5	1.5				1.5	0.5	22806.936^{c}	0

Table S-II (continue)

 N'	K'_a	K_c'	J'	F'	<i>N</i> ″	K_a''	K_c''			obs. freq. ^{a} (MHz)	oc. (kHz)
	u	0	2.5	1.5		u	U	1.5	1.5	22807.479	0
			2.5	2.5				1.5	2.5	22807.632	1
			1.5	2.5				1.5	2.5	22827.184^{f}	7
$0^+ \star$	$\leftarrow 0^+$										
2	1	1	1.5	0.5	1	1	0	0.5	0.5	30519.244	1
			1.5	1.5				0.5	0.5	30519.761	0
			1.5	1.5				0.5	1.5	30520.270	-3
			1.5	2.5				0.5	1.5	30521.112	0
			2.5	3.5				1.5	2.5	30524.810	1
			2.5	2.5				1.5	1.5	30525.007	2
			2.5	1.5				1.5	0.5	30525.115^{c}	2
			2.5	2.5				1.5	2.5	30525.716^{g}	2
0- ∢	$\leftarrow 0^{-}$										
2	1	1	1.5	0.5	1	1	0	0.5	0.5	30519.191	2
			1.5	1.5				0.5	0.5	30519.707	0
			1.5	1.5				0.5	1.5	30520.220	1
			1.5	2.5				0.5	1.5	30521.058	0
			2.5	3.5				1.5	2.5	30524.754	-2
			2.5	2.5				1.5	1.5	30524.953^{c}	3
			2.5	1.5				1.5	0.5	30525.056	-3
			2.5	2.5				1.5	2.5	30525.655^{g}	-5
$0^+ \star$	$\leftarrow 0^+$										
2	2	1	2.5	1.5	2	0	2	2.5	1.5	13757.533	1
			2.5	2.5				2.5	2.5	13757.821	0
			2.5	1.5				2.5	2.5	13758.229	-2
			2.5	3.5				2.5	3.5	13758.499	-1
			1.5	2.5				1.5	2.5	13808.465	0
			1.5	1.5				1.5	2.5	13808.656	-2
			1.5	2.5				1.5	1.5	13809.649	0
			1.5	1.5				1.5	1.5	13809.844	2
0- 4	$\leftarrow 0^{-}$										
2	2	1	2.5	1.5	2	0	2	2.5	1.5	13757.625	-1
			2.5	2.5				2.5	2.5	13757.916	0
			2.5	1.5				2.5	2.5	13758.327	1
			2.5	3.5				2.5	3.5	13758.594	0

Table S-II (continue)

N'	K'_a	K'_c	J'	F'	N''	K_a''	K_c''			obs. freq. ^{a} (MHz)	oc. (kHz)
			1.5	2.5				1.5	2.5	13808.558	-1
			1.5	1.5				1.5	2.5	13808.753	0
			1.5	2.5				1.5	1.5	13809.744	1
			1.5	1.5				1.5	1.5	13809.937	1
$0^+ \star$	-0^+	& 0-	$\leftarrow 0^{-}$	- h							
1	1	0	1.5	1.5	0	0	0	0.5	0.5	17883.584^{f}	-1
			1.5	0.5				0.5	0.5	17884.135^{f}	-1
			1.5	2.5				0.5	1.5	17884.606	-1
			1.5	1.5				0.5	1.5	17885.316	1
			1.5	0.5				0.5	1.5	17885.866^{f}	-1
			0.5	1.5				0.5	0.5	17918.854	-1
			0.5	0.5				0.5	0.5	17919.366	-1
			0.5	1.5				0.5	1.5	17920.584^{f}	-1
			0.5	0.5				0.5	1.5	17921.097^{f}	0
$0^+ \star$	$\leftarrow 0^+$	& 0-	$\leftarrow 0^{-}$	- h							
2	1	1	2.5	1.5	1	0	1	1.5	0.5	35078.778^{e}	-6
			2.5	2.5				1.5	1.5	35078.804	1
			2.5	3.5				1.5	2.5	35079.132	0
			2.5	2.5				1.5	2.5	35080.039	2
			1.5	0.5				0.5	1.5	35102.228^{i}	1
			1.5	1.5				0.5	1.5	35102.746	2
			1.5	2.5				0.5	1.5	35103.583	-1
			1.5	0.5				0.5	0.5	35104.412	2
			1.5	1.5				0.5	0.5	35104.926	-2
			1.5	2.5				1.5	2.5	$35111.414^{i,j}$	-2
$0^- \epsilon$	$\leftarrow 0^+$										
1	1	1	1.5	1.5	0	0	0	0.5	0.5	14025.948^{g}	1
			1.5	2.5				0.5	1.5	14026.847	1
			1.5	1.5				0.5	1.5	14027.672^{g}	-4
$0^+ \star$	$\leftarrow 0^{-}$										
1	1	1	1.5	1.5	0	0	0	0.5	0.5	14025.829^{g}	-2
			1.5	2.5				0.5	1.5	14026.731	1
			1.5	1.5				0.5	1.5	14027.562^{g}	1

Table S-II (continue)

 a Lines without superscript letter were observed by FTMW spectroscopy, and estimated error of 3 kHz are given in the least-squares analysis uisng the spfit program.

 b Very broad line. Not included in the least-squares analysis.

 c Doppler component(s) of the line is(are) overlapping with other(s). Estimated error of 6 kHz is given in the least-squares analysis.

 d Observed by the FTMW-MW double resonance technique. Estimated error of 6 kHz is given in the least-squares analysis.

 e The line is overlapping with other. Estimated error of 6 kHz is given in the least-squares analysis.

^f Broader line observed. Estimated error of 6 kHz is given in the least-squares analysis.

 g Very weak line observed. Estimated error of 6 kHz is given in the least-squares analysis.

^h Tunnel splitting is not observed in *c*-type transitions. The observed line frequency is processed as the averaged frequencies for the $0^+ \leftarrow 0^+ \& 0^- \leftarrow 0^-$ components in the least squares fit.

 i Observed by the FTMW-MW double resonance technique. Estimated error of 20 kHz is given in the least-squares analysis.

^{*j*} Only the $0^+ \leftarrow 0^+$ component is observed by monitoring $1_{01}-0_{00}$ (J = 1.5-0.5, F = 2.5-1.5, $0^+ \leftarrow 0^+$) line @ 13330.285 MHz.

A model calculation for the C constant of $HOSO_2$

For a simplification, we made following assumptions.

- The structure of the SO₃ frame is invariant during the OH torsional motion.
- The *c*-axis is fixed to the SO₃ frame, paerpendicular to the plane involving three O atoms, through the S atom, as illustrated in Fig. S-I.

The inertial moment of the proton with respect to the fixed *c*-axis is written as a function of the torsional coordinate α ,

$$I_{\rm H}^{C}(\alpha)/M_{\rm H} = \left\{ (R_{\rm SO} + R_{\rm OH}\cos(\pi - \gamma)) \cdot \cos\left(\beta - \frac{\pi}{2}\right) + R_{\rm OH}\sin(\pi - \gamma)\sin\left(\beta - \frac{\pi}{2}\right)\cos\alpha \right\}^{2} + \left\{ R_{\rm OH}\sin(\pi - \gamma)\sin\alpha \right\}^{2},$$
(1)

where $M_{\rm H}$ is the mass of proton. The values of $R_{\rm SO}$, $R_{\rm OH}$, β , and γ are fixed to those at the theoretical equilibrium structure in Fig. 1 of the main text, 1.607 Å, 0.968 Å, 102.92°, and 107.69°, respectively. Then, eq. (1) is rewritten as

$$I_{\rm H}^{C}(\alpha) = M_{\rm H} \left\{ \left(1.853 + 0.206 \cos \alpha \right)^2 + \left(0.922 \sin \alpha \right)^2 \right\}.$$
 (2)

The contribution of the SO₃ frame, $I_{SO_3}^C$, is constant from the above assumptions, fixed to 98.65 uÅ² in the present calculation in order to reproduce the experimental C constant well.

Figure S-I: Structural parameters for a model caluculation of the *C* constant. α is the torsional coordinate. The OH bond is parallel to the *c*-axis and the proton is above the plane involing three O atoms at $\alpha = 0$. β and γ are fixed to 102.92° and 107.69°, respectively.

The total $I^{C}(\alpha)$ value is the sum of $I_{\rm H}^{C}(\alpha)$ and $I_{\rm SO_3}^{C}$. The rotational constant C is then obtained by calculating the expectation value of the inverse of $I^{C}(\alpha)$ using the wavefunction obtained from the tunnel splitting calculation described in the discussion of the main text. The C constant of HOSO₂ is then calculated to be 4910.69577 and 4910.69558 MHz for the 0^{+} and 0^{-} sublevels, respectively, assuming the potential barrier of 1150 cm⁻¹ (V_1 =0 and V_2 = 1150 cm⁻¹). For DOSO₂, a similar calculation gives a much smaller difference in the Cconstant, 8×10^{-4} kHz (the C constant of 0^{+} is larger).