Electronic Supplementary Information

Aromaticity reversals and their effect on bonding in the low-lying electronic states of cyclooctatetraene

Peter B. Karadakov* and Nicholas Preston
Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
E-mail: peter.karadakov@york.ac.uk

Table of Contents
\qquad
2. Gaussian Cube Files with Isotropic Shielding Values ...S3
3. Additional Computational Details.. S3
4. Optimised Geometries and Other Computational Data..S4
5. Additional Information about the $\operatorname{CASSCF}(8,8)$ Wavefunctions for the $\mathbf{S}_{\mathbf{0}}, S_{\mathbf{1}}, S_{\mathbf{2}}$ and T_{1} States of $D_{8 \mathrm{~h}}$ COTS5

1. Additional Figures

Fig. S1. Isotropic shielding contour plots for the S_{0} (at $D_{4 \mathrm{~h}}$ and $D_{8 \mathrm{~h}}$ geometries), $\mathrm{T}_{1}, \mathrm{~S}_{1}$ and S_{2} (at $D_{8 \mathrm{~h}}$ geometries) electronic states of COT in planes $1 \AA$ above the respective molecular planes. CASSCF $(8,8)$-GIAO/6-311+G*//CASSCF $(8,8) / 6-31 \mathrm{G}^{* *}$ level of theory, $\sigma_{\text {iso }}(\mathbf{r})$ in ppm, distances in \AA.

Fig. S2. Isotropic shielding contour plots for the $\mathrm{S}_{0}\left(\right.$ at $D_{4 \mathrm{~h}}$ and $D_{8 \mathrm{~h}}$ geometries), $\mathrm{T}_{1}, \mathrm{~S}_{1}$ and S_{2} (at $D_{8 \mathrm{~h}}$ geometries) electronic states of COT in vertical planes perpendicular to the respective molecular planes. The vertical plane for the S_{0} state at the $D_{4 \mathrm{~h}}$ geometry is passing through the midpoints of two opposite $\mathrm{C}-\mathrm{C}$ bonds; for all other states the vertical planes are passing through two opposite C-H unites. Other details as for Figure S1.

2. Gaussian Cube Files with Isotropic Shielding Values

A zip archive of Gaussian cube files with isotropic shielding values for the S_{0} (at $D_{2 \mathrm{~d}}, D_{4 \mathrm{~h}}$ and $D_{8 \mathrm{~h}}$ geometries), $\mathrm{T}_{1}, \mathrm{~S}_{1}$ and S_{2} (at $D_{8 \mathrm{~h}}$ geometries) electronic states of COT is available as a separate download. These files can be examined with several programs, including GaussView (see https://gaussian.com/gaussview6/) and Visual Molecular Dynamics (VMD, see https://www.ks.uiuc.edu/Research/vmd/). Both URLs were checked on 24 September 2021.

3. Additional Computational Details

All GAUSSIAN CASSCF $(8,8) / 6-31 \mathrm{G}^{* *}$ and $\operatorname{CASSCF}(8,8) / \mathrm{cc}-\mathrm{pVTZ}$ geometry optimizations reported in this paper were carried out using the option "Opt(VeryTight)".

All DALTON CASSCF $(8,8)$-GIAO/6-311+G* NMR shielding tensor calculations were run without changes to the default program options.

4. Optimised Geometries

The geometries of all states of COT of $D_{8 \mathrm{~h}}$ symmetry are defined completely by the data included in Table 1.

For the geometries below, all coordinates are in \AA.
$\operatorname{CASSCF}(8,8) / 6-31 \mathrm{G}^{* *}$ optimised geometry of $D_{2 d} \mathrm{~S}_{0}$ COT.

C	-0.671777	1.562419	0.387958
C	-1.562419	0.671777	-0.387958
C	-1.562419	-0.671777	-0.387958
C	-0.671777	-1.562419	0.387958
C	0.671777	-1.562419	0.387958
C	1.562419	-0.671777	-0.387958
C	1.562419	0.671777	-0.387958
C	0.671777	1.562419	0.387958
H	-1.172715	2.323498	0.966126
H	-2.323498	1.172715	-0.966126
H	-2.323498	-1.172715	-0.966126
H	-1.172715	-2.323498	0.966126
H	1.172715	-2.323498	0.966126
H	2.323498	-1.172715	-0.966126
H	2.323498	1.172715	-0.966126
H	1.172715	2.323498	0.966126

$\operatorname{CASSCF}(8,8) / \mathrm{cc}-\mathrm{pVTZ}$ optimised geometry of $D_{2 \mathrm{~d}} \mathrm{~S}_{0}$ COT.

C	-0.669177	1.560748	0.384289
C	-1.560748	0.669177	-0.384289
C	-1.560748	-0.669177	-0.384289
C	-0.669177	-1.560748	0.384289
C	0.669177	-1.560748	0.384289
C	1.560748	-0.669177	-0.384289
C	1.560748	0.669177	-0.384289
C	0.669177	1.560748	0.384289
H	-1.168154	2.323977	0.956803
H	-2.323977	1.168154	-0.956803
H	-2.323977	-1.168154	-0.956803
H	-1.168154	-2.323977	0.956803
H	1.168154	-2.323977	0.956803
H	2.323977	-1.168154	-0.956803
H	2.323977	1.168154	-0.956803
H	1.168154	2.323977	0.956803

$\operatorname{CASSCF}(8,8) / 6-31 \mathrm{G}^{* *}$ optimised geometry of $D_{4 \mathrm{~h}} \mathrm{~S}_{0} \operatorname{COT}$.

C	0.675524	1.716236	0.000000
C	1.716236	0.675524	0.000000
C	1.716236	-0.675524	0.000000
C	0.675524	-1.716236	0.000000
C	-0.675524	-1.716236	0.000000
C	-1.716236	-0.675524	0.000000
C	-1.716236	0.675524	0.000000
C	-0.675524	1.716236	0.000000
H	1.107408	2.703584	0.000000

H	2.703584	1.107408	0.000000
H	2.703584	-1.107408	0.000000
H	1.107408	-2.703584	0.000000
H	-1.107408	-2.703584	0.000000
H	-2.703584	-1.107408	0.000000
H	-2.703584	1.107408	0.000000
H	-1.107408	2.703584	0.000000

$\operatorname{CASSCF}(8,8) /$ cc-pVTZ optimised geometry of $D_{4 \mathrm{~h}} \mathrm{~S}_{0}$ COT.

C	0.672701	1.712477	0.000000
C	1.712477	0.672701	-0.000000
C	1.712477	-0.672701	0.000000
C	0.672701	-1.712477	-0.000000
C	-0.672701	-1.712477	0.000000
C	-1.712477	-0.672701	-0.000000
C	-1.712477	0.672701	0.000000
C	-0.672701	1.712477	-0.000000
H	1.103917	2.697556	0.000000
H	2.697556	1.103917	-0.000000
H	2.697556	-1.103917	0.000000
H	1.103917	-2.697556	-0.000000
H	-1.103917	-2.697556	0.000000
H	-2.697556	-1.103917	-0.000000
H	-2.697556	1.103917	0.000000
H	-1.103917	2.697556	-0.000000

5. Additional Information about the $\operatorname{CASSCF}(8,8)$ Wavefunctions for the $\mathbf{S}_{\mathbf{0}}, \mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}$ and \mathbf{T}_{1} States of $\mathbf{D}_{\mathbf{8 h}}$ COT

As explained in the section Computational procedure, the largest subgroup of the $D_{8 \mathrm{~h}}$ point group supported by the Dalton program package is $D_{2 h}$, therefore the $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$ and T_{1} states of $D_{8 \mathrm{~h}}$ COT were treated as the $1^{1} \mathrm{~B}_{1 \mathrm{~g}}, 1^{1} \mathrm{~A}_{\mathrm{g}}, 2^{1} \mathrm{~A}_{\mathrm{g}}$ and $1^{3} \mathrm{~B}_{1 \mathrm{~g}}$ states, respectively. The data included below provides details of the compositions of the respective $\operatorname{CASSCF}(8,8) / 6$ $311+\mathrm{G}^{*} / / \operatorname{CASSCF}(8,8) / 6-31 \mathrm{G}^{* *}$ wavefunctions taken from the Dalton output files. Note that due to the use of state-optimized CASSCF wavefunctions, the natural orbitals for all four states are different; we include information for the active-space natural orbitals only. The numbering of the active-space natural orbitals in CSFs corresponds to the order in which these orbitals appear in the lists showing their occupancies.
$\mathrm{S}_{0}\left(1^{1} \mathrm{~B}_{1 \mathrm{~g}}\right)$ state
Occupancies of natural orbitals

Symmetry 5 (B1u) -- Total occupation in this symmetry is 2.998517251

$$
1.939910483 \quad 1.001987233 \quad 0.056619535
$$

Symmetry 6 (B2g) -- Total occupation in this symmetry is 1.999747757
1.8929434530 .106804304

Symmetry 7 (B3g) -- Total occupation in this symmetry is 1.999747756
$1.892943458 \quad 0.106804298$

```
Symmetry 8 ( Au ) -- Total occupation in this symmetry is 1.001987236
    1.001987236
Printout of CI-coefficients abs greater than 0.05000 for root 1
*** NOTE: this root is the reference state ***
Printout of coefficients in interval 3.1623E-01 to 1.0000E+00
===================================================================
    Coefficient of CSF no. 39 is 0.89412239 8.94122394E-01
    Orbital }10
    Spin coupling 2 2 2 2 1 < -1
```

The S_{0} data shows that the largest contribution to the S_{0} wavefunction (79.9\%) is provided by a single configuration state function (CSF), in which the active-space natural orbitals 1, 4 and 6 are doubly-occupied, and the spins of the singly-occupied active-space natural orbitals 2 and 8 are coupled to a singlet.
$\mathrm{S}_{1}\left(1^{1} \mathrm{~A}_{\mathrm{g}}\right)$ state

```
Occupancies of natural orbitals
Symmetry 5 ( B1u) -- Total occupation in this symmetry is 3.018022301
    1.928102895 1.038015577 0.051903830
Symmetry 6 ( B2g) -- Total occupation in this symmetry is 1.971970668
    1.867502612 0.104468055
Symmetry 7 ( B3g) -- Total occupation in this symmetry is 1.971970647
    1.867502600 0.104468047
Symmetry 8 ( Au ) -- Total occupation in this symmetry is 1.038036384
    1.038036384
Printout of CI-coefficients abs greater than 0.05000 for root 1
*** NOTE: this root is the reference state ***
Printout of coefficients in interval 3.1623E-01 to 1.0000E+00
=====================================================================
    Coefficient of CSF no. 7 is 0.62102063 6.21020633E-01
    Orbital 1 2 4 6
    Spin coupling 2 2 2 2
    Coefficient of CSF no. 49 is 0.62102879 6.21028795E-01
Orbital 1 4 6 8
Spin coupling 2 2 2 2
```

The S_{1} data shows that the largest contribution to the S_{1} wavefunction (77.1%) is provided by two CSFs, in which all active-space natural orbitals are doubly-occupied (orbitals 1, 2, 4 and 6 in the first CSF, and orbitals $1,4,6$ and 8 in the second CFS, respectively).

```
S
Occupancies of natural orbitals
Symmetry 5 ( B1u) -- Total occupation in this symmetry is 2.997965956
    1.981221666 1.002561542 0.014182748
Symmetry 6 ( B2g) -- Total occupation in this symmetry is 1.999730938
    1.963059419 0.036671518
Symmetry 7 ( B3g) -- Total occupation in this symmetry is 1.999730939
    1.963059471 0.036671468
Symmetry 8 ( Au ) -- Total occupation in this symmetry is 1.002572167
    1.002572167
Printout of CI-coefficients abs greater than 0.10000 for root 2
*** NOTE: this root is the reference state ***
Printout of coefficients in interval 3.1623E-01 to 1.0000E+00
```



```
    Coefficient of CSF no. 7 is -0.68519088 -6.85190880E-01
    Orbital 1 2 4 6
    Spin coupling 2 2 2 2
    Coefficient of CSF no. 49 is 0.68519464 6.85194641E-01
    Orbital 1 4 6 8
    Spin coupling 2 2 2 2
```

The S_{2} data shows that the largest contribution to the S_{2} wavefunction (93.9%) is provided by two CSFs, in which all active-space natural orbitals are doubly-occupied (orbitals 1, 2, 4 and 6 in the first CSF, and orbitals 1, 4, 6 and 8 in the second CFS, respectively). These CSFs are similar to those dominating the S_{1} wavefunction but their combined weight in S_{2} is larger, and the coefficients for these CSFs are of opposite signs.

```
T
    Occupancies of natural orbitals
    Symmetry 5 ( B1u) -- Total occupation in this symmetry is 3.001154697
    1.945715406 1.005938179 0.049501112
Symmetry 6 ( B2g) -- Total occupation in this symmetry is 1.996453559
```

```
    1.894918303 0.101535256
Symmetry 7 ( B3g) -- Total occupation in this symmetry is 1.996453557
    1.894918283 0.101535274
Symmetry 8 ( Au ) -- Total occupation in this symmetry is 1.005938187
    1.005938187
Printout of CI-coefficients abs greater than 0.05000 for root 1
*** NOTE: this root is the reference state ***
Printout of coefficients in interval 3.1623E-01 to 1.0000E+00
=====================================================================
    Coefficient of CSF no. 39 is 0.89784048 8.97840483E-01
    Orbital 
    Spin coupling 2 2 2 2 1 1
```

The T_{1} data shows that the largest contribution to the T_{1} wavefunction (80.6%) is provided by a single configuration state function (CSF), in which the active-space natural orbitals 1, 4 and 6 are doubly-occupied, and the spins of the singly-occupied active-space natural orbitals 2 and 8 are coupled to a triplet. This is similar to the composition of the S_{0} wavefunction, and the main difference between the CSFs dominating the S_{0} and T_{1} wavefunctions is in the mode of coupling of the spins of the singly-occupied active-space natural orbitals 2 and 8 .

