Electronic Supplementary Information

Aromaticity reversals and their effect on bonding in the low-lying electronic states of cyclooctatetraene

Peter B. Karadakov* and Nicholas Preston

Department of Chemistry, University of York, Heslington, York YO10 5DD, UK

E-mail: peter.karadakov@york.ac.uk

Table of Contents

1. Additional Figures	S2
2. Gaussian Cube Files with Isotropic Shielding Values	S3
3. Additional Computational Details	S3
4. Optimised Geometries and Other Computational Data	S4
5. Additional Information about the CASSCF(8,8) Wavefunctions for the S_0 , T_1 States of D_{8h} COT	S ₁ , S ₂ and

1. Additional Figures

Fig. S1. Isotropic shielding contour plots for the S₀ (at D_{4h} and D_{8h} geometries), T₁, S₁ and S₂ (at D_{8h} geometries) electronic states of COT in planes 1 Å above the respective molecular planes. CASSCF(8,8)-GIAO/6-311+G*//CASSCF(8,8) /6-31G** level of theory, $\sigma_{iso}(\mathbf{r})$ in ppm, distances in Å.

Fig. S2. Isotropic shielding contour plots for the S_0 (at D_{4h} and D_{8h} geometries), T_1 , S_1 and S_2 (at D_{8h} geometries) electronic states of COT in vertical planes perpendicular to the respective molecular planes. The vertical plane for the S_0 state at the D_{4h} geometry is passing through the midpoints of two opposite C–C bonds; for all other states the vertical planes are passing through two opposite C–H unites. Other details as for Figure S1.

2. Gaussian Cube Files with Isotropic Shielding Values

A zip archive of Gaussian cube files with isotropic shielding values for the S₀ (at D_{2d} , D_{4h} and D_{8h} geometries), T₁, S₁ and S₂ (at D_{8h} geometries) electronic states of COT is available as a separate download. These files can be examined with several programs, including GaussView (see https://gaussian.com/gaussview6/) and Visual Molecular Dynamics (VMD, see https://www.ks.uiuc.edu/Research/vmd/). Both URLs were checked on 24 September 2021.

3. Additional Computational Details

All GAUSSIAN CASSCF(8,8)/6-31G** and CASSCF(8,8)/cc-pVTZ geometry optimizations reported in this paper were carried out using the option "Opt(VeryTight)".

All DALTON CASSCF(8,8)-GIAO/6-311+G* NMR shielding tensor calculations were run without changes to the default program options.

4. Optimised Geometries

The geometries of all states of COT of D_{8h} symmetry are defined completely by the data included in Table 1.

For the geometries below, all coordinates are in Å.

CASSCF(8,8)/6-31G** optimised geometry of D_{2d} S₀ COT.

С	-0.671777	1.562419	0.387958
С	-1.562419	0.671777	-0.387958
С	-1.562419	-0.671777	-0.387958
С	-0.671777	-1.562419	0.387958
С	0.671777	-1.562419	0.387958
С	1.562419	-0.671777	-0.387958
С	1.562419	0.671777	-0.387958
С	0.671777	1.562419	0.387958
Н	-1.172715	2.323498	0.966126
Н	-2.323498	1.172715	-0.966126
Н	-2.323498	-1.172715	-0.966126
Н	-1.172715	-2.323498	0.966126
Н	1.172715	-2.323498	0.966126
Н	2.323498	-1.172715	-0.966126
Н	2.323498	1.172715	-0.966126
Н	1.172715	2.323498	0.966126

CASSCF(8,8)/cc-pVTZ optimised geometry of D_{2d} S₀ COT.

С	-0.669177	1.560748	0.384289
С	-1.560748	0.669177	-0.384289
С	-1.560748	-0.669177	-0.384289
С	-0.669177	-1.560748	0.384289
С	0.669177	-1.560748	0.384289
С	1.560748	-0.669177	-0.384289
С	1.560748	0.669177	-0.384289
С	0.669177	1.560748	0.384289
Н	-1.168154	2.323977	0.956803
Н	-2.323977	1.168154	-0.956803
Н	-2.323977	-1.168154	-0.956803
Н	-1.168154	-2.323977	0.956803
Н	1.168154	-2.323977	0.956803
Н	2.323977	-1.168154	-0.956803
Н	2.323977	1.168154	-0.956803
Н	1.168154	2.323977	0.956803

CASSCF(8,8)/6-31G** optimised geometry of D_{4h} S₀ COT.

С	0.675524	1.716236	0.00000
С	1.716236	0.675524	0.00000
С	1.716236	-0.675524	0.00000
С	0.675524	-1.716236	0.000000
С	-0.675524	-1.716236	0.000000
С	-1.716236	-0.675524	0.00000
С	-1.716236	0.675524	0.00000
С	-0.675524	1.716236	0.00000
Н	1.107408	2.703584	0.00000

Н	2.703584	1.107408	0.000000
Н	2.703584	-1.107408	0.000000
Н	1.107408	-2.703584	0.000000
Н	-1.107408	-2.703584	0.00000
Н	-2.703584	-1.107408	0.00000
Н	-2.703584	1.107408	0.00000
Н	-1.107408	2.703584	0.000000

CASSCF(8,8)/cc-pVTZ optimised geometry of D_{4h} S₀ COT.

С	0.672701	1.712477	0.000000
С	1.712477	0.672701	-0.000000
С	1.712477	-0.672701	0.000000
С	0.672701	-1.712477	-0.000000
С	-0.672701	-1.712477	0.00000
С	-1.712477	-0.672701	-0.000000
С	-1.712477	0.672701	0.000000
С	-0.672701	1.712477	-0.000000
Н	1.103917	2.697556	0.000000
Н	2.697556	1.103917	-0.000000
Н	2.697556	-1.103917	0.000000
Н	1.103917	-2.697556	-0.000000
Н	-1.103917	-2.697556	0.00000
Н	-2.697556	-1.103917	-0.000000
Н	-2.697556	1.103917	0.000000
Н	-1.103917	2.697556	-0.00000

5. Additional Information about the CASSCF(8,8) Wavefunctions for the S_0 , S_1 , S_2 and T_1 States of D_{8h} COT

As explained in the section Computational procedure, the largest subgroup of the D_{8h} point group supported by the Dalton program package is D_{2h} , therefore the S₀, S₁, S₂ and T₁ states of D_{8h} COT were treated as the 1¹B_{1g}, 1¹A_g, 2¹A_g and 1³B_{1g} states, respectively. The data included below provides details of the compositions of the respective CASSCF(8,8)/6-311+G*//CASSCF(8,8)/6-31G** wavefunctions taken from the Dalton output files. Note that due to the use of state-optimized CASSCF wavefunctions, the natural orbitals for all four states are different; we include information for the active-space natural orbitals only. The numbering of the active-space natural orbitals in CSFs corresponds to the order in which these orbitals appear in the lists showing their occupancies.

 $S_0 (1^1B_{1g})$ state

Occupancies of natural orbitals	
Symmetry 5 (B1u) Total occupation in this symmetry is	2.998517251
1.939910483 1.001987233 0.056619535	
Symmetry 6 (B2g) Total occupation in this symmetry is	1.999747757
1.892943453 0.106804304	
Symmetry 7 (B3g) Total occupation in this symmetry is	1.999747756
1.892943458 0.106804298	

Symmetry 8 (Au) -- Total occupation in this symmetry is 1.001987236 1.001987236 Printout of CI-coefficients abs greater than 0.05000 for root 1 *** NOTE: this root is the reference state *** Printout of coefficients in interval 3.1623E-01 to 1.0000E+00 _____ Coefficient of CSF no. 39 is 0.89412239 8.94122394E-01 1 4 Orbital 2 8 6 Spin coupling 2 2 2 1 -1

The S_0 data shows that the largest contribution to the S_0 wavefunction (79.9%) is provided by a single configuration state function (CSF), in which the active-space natural orbitals 1, 4 and 6 are doubly-occupied, and the spins of the singly-occupied active-space natural orbitals 2 and 8 are coupled to a singlet.

 $S_1 (1^1 A_g)$ state

```
Occupancies of natural orbitals
    Symmetry 5 ( B1u) -- Total occupation in this symmetry is 3.018022301
 1.928102895
             1.038015577 0.051903830
Symmetry 6 (B2g) -- Total occupation in this symmetry is
                                                    1.971970668
 1.867502612 0.104468055
Symmetry 7 (B3g) -- Total occupation in this symmetry is
                                                    1.971970647
 1.867502600 0.104468047
Symmetry 8 (Au) -- Total occupation in this symmetry is
                                                    1.038036384
 1.038036384
Printout of CI-coefficients abs greater than 0.05000 for root 1
*** NOTE: this root is the reference state ***
Printout of coefficients in interval 3.1623E-01 to 1.0000E+00
_____
Coefficient of CSF no.
                           7 is
                                    0.62102063 6.21020633E-01
Orbital
                      4
                         6
               1 2
Spin coupling
               2 2
                    2
                         2
Coefficient of CSF no.
                                0.62102879 6.21028795E-01
                          49 is
Orbital
                      6
                         8
               1 4
Spin coupling
               2 2 2
                         2
```

The S_1 data shows that the largest contribution to the S_1 wavefunction (77.1%) is provided by two CSFs, in which all active-space natural orbitals are doubly-occupied (orbitals 1, 2, 4 and 6 in the first CSF, and orbitals 1, 4, 6 and 8 in the second CFS, respectively).

 $S_2 (2^1 A_g)$ state Occupancies of natural orbitals Symmetry 5 (B1u) -- Total occupation in this symmetry is 2.997965956 1.981221666 1.002561542 0.014182748 Symmetry 6 (B2g) -- Total occupation in this symmetry is 1.999730938 1.963059419 0.036671518 Symmetry 7 (B3g) -- Total occupation in this symmetry is 1.999730939 1.963059471 0.036671468 Symmetry 8 (Au) -- Total occupation in this symmetry is 1.002572167 1.002572167 Printout of CI-coefficients abs greater than 0.10000 for root 2 *** NOTE: this root is the reference state *** Printout of coefficients in interval 3.1623E-01 to 1.0000E+00 _____ Coefficient of CSF no. 7 is -0.68519088 -6.85190880E-01 Orbital 1 2 4 6 Spin coupling 2 2 2 2 Coefficient of CSF no. 49 is 0.68519464 6.85194641E-01 Orbital 1 4 6 8 Spin coupling 2 2 2 2

The S_2 data shows that the largest contribution to the S_2 wavefunction (93.9%) is provided by two CSFs, in which all active-space natural orbitals are doubly-occupied (orbitals 1, 2, 4 and 6 in the first CSF, and orbitals 1, 4, 6 and 8 in the second CFS, respectively). These CSFs are similar to those dominating the S_1 wavefunction but their combined weight in S_2 is larger, and the coefficients for these CSFs are of opposite signs.

T₁ (1³B_{1g}) state
Occupancies of natural orbitals
-----Symmetry 5 (B1u) -- Total occupation in this symmetry is 3.001154697
1.945715406 1.005938179 0.049501112
Symmetry 6 (B2g) -- Total occupation in this symmetry is 1.996453559

1.894918303 0.101535256 Symmetry 7 (B3g) -- Total occupation in this symmetry is 1.996453557 1.894918283 0.101535274 Symmetry 8 (Au) -- Total occupation in this symmetry is 1.005938187 1.005938187 Printout of CI-coefficients abs greater than 0.05000 for root 1 *** NOTE: this root is the reference state *** Printout of coefficients in interval 3.1623E-01 to 1.0000E+00 _____ Coefficient of CSF no. 39 is 0.89784048 8.97840483E-01 Orbital 1 4 6 2 8 Spin coupling 2 2 2 1 1

The T_1 data shows that the largest contribution to the T_1 wavefunction (80.6%) is provided by a single configuration state function (CSF), in which the active-space natural orbitals 1, 4 and 6 are doubly-occupied, and the spins of the singly-occupied active-space natural orbitals 2 and 8 are coupled to a triplet. This is similar to the composition of the S_0 wavefunction, and the main difference between the CSFs dominating the S_0 and T_1 wavefunctions is in the mode of coupling of the spins of the singly-occupied active-space natural orbitals 2 and 8.