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1 Implementation Details of n-Body Problem

In the implementations of DNNs in the n-body problem, we used FCNNs with five hidden layers.
For each layer, batch normalization [5] was applied to accelerate the parameter optimization. For
AUNE, the margin α and the balancing coefficient λ for the angular distances were set as 2e-1 and
1e-3, respectively. For each iteration of the training of AUNE, two samples were selected (K = 2)
to calculate the loss function of the distance matching problem. All DNNs were trained by Adam
optimizer [6] with an initial learning rate of 1e-3 and a batch size of 16. The model parameters of
DNNs were optimized during 500 iterations. To simulate the trajectories of n particles, we used a
python code at https://github.com/pmocz/nbody-python.

2 Implementation Details of Materials Property Prediction

We used CGCNN with three graph convolution and two dense layers as the competitor and the
projection network of AUNE. In this experiment, AUNE trained with the margin α = 2e − 1, the
balancing coefficient λ = 1e− 2, and the number of samples K = 2. Similarly, all DNNs were trained
by Adam optimizer during 300 iterations. The competitor CGCNN was trained with an initial learning
rate of 5e-4 and a batch size of 128. AUNE was trained with the initial learning rate of 1e-3 and the
batch size of 64. We used PyTorch [7] and PyTorch Geometric Library [2] to implement CGCNN.

The crystal structures of the hybrid perovskites were converted into the mathematical graphs
G = (V, E , X,Q), where V is a set of atoms, E is a set of chemical bonds between the atoms, X is
an atom-feature matrix, and Q is a bond-feature matrix. Nine elemental attributes shown in Table 1
were assigned for each atom in V. For each pair of atoms within 5 Å, an edge between the atoms was
generated with 128 bond features of the bond length discretized based on radial basis function kernel
(RBF). We used Pymatgen [1] to convert the crystal structures into the mathematical graphs.

Table 1: Selected elemental attributes and their characteristics.

Category Variable name (Unit) Comment

Size

atomic volume (cm3/mol) Atomic volume

atomic weight (-) Atomic weight

covalent radius bragg (pm) Covalent radius by Bragg.

Heat fusion heat (kJ/mol) Fusion heat

Electronic

atomic number (-) Atomic number

en pauling (-) Pauling’s scale of electronegativity

electron affinity (eV) Electron affinity

period (-) Period in periodic table

first ion eng (eV) First ionization energy

3 Algorithmic Description of AUNE-Based Machine Learning

For the reproducibility of this work, we provide an algorithmic description of AUNE-based ML and
its training process. Algorithm 1 presents a formal process of the training process of AUNE and the
AUNE-based ML. Note that the training arguments of the gradient descent methods are omitted. For
a training dataset D and hyperparameters, the nonlinearity encoder f(x;θ) is trained to minimize
the training loss L = Lk(D;θ) + λΩα(D;θ) by gradient descent method as shown in line 9.

After the training of the nonlineairty encoder, the original data xi are projected by the encoder
into the latent space where the input features and the target values have a linear relation. The original
data D is transformed into Z = f(D;θ∗) as shown in line 14. For the latent data Z, the prediction
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Algorithm 1: Training process of AUNE and AUNE-based ML

Input : Training dataset D = {(x1,y1), (x2,y2), ..., (xN ,yN )},
Margin α > 0,
Balancing coefficient λ > 0,
The number of samples K > 0

Output: Prediction results Y = {y′

1,y
′

2, ...,y
′

N}
1 // Train nonlinearity encoder
2 repeat
3 // Calculate the training loss function the given α, λ, and K.

4 Lk = 1
4NK

∑N
i=1

∑K
k=1

(
dp(zi, zrk ;θ)− dp(yi,yrk)

)2
5 Ωα = 1

N

∑N
i=1

∑
ti,j,q∈Ti max(Ω(ti,j,q;θ)− α, 0)

6 L = Lk(D;θ) + λΩα(D;θ)
7 // Optimize model parameters of the encoder for a given learning rate ηf .

8 θ = θ − ηf ∂L∂θ
9 until θ converged;

10 // Train prediction model based on the trained encoder.
11 repeat
12 // Project original data into the latent space.
13 Z = f(D;θ∗)
14 // Calculate surrogate loss function (e.g., MAE) for the projected inputs.

15 Ls = 1
N

∑N
i=1 |yi − g(zi;µ

∗)|
16 // Optimize model parameters of the prediction model for a given learning rate ηg.

17 µ = µ− ηg ∂Ls

∂µ

18 until µ converged;
19 return f(x;θ∗) and g(z;µ∗)

model g(z;µ) is trained to minimize the surrogate loss (e.g., MAE) based on the gradient descent
methods as shown in line 18. For the optimized encoder and the trained prediction model, we can
predict a physical state x via y = g(f(x;θ∗);µ∗). All implementation details and source codes of
AUNE are publicly available at open after the review process.

4 Approximation Error

For the distance matching problem, we can theoretically derive an approximation error of the sample-
based encoding by applying Hoeffding’s inequality to the error bound [4]. An important character-

istic of the projected relative distances Li is that
(dp(zi,z;θ)−dp(yi,yj))

2

4 is bounded in [0, 1] because
dp(zi, z;θ) and dp(yi,y) are in [0, 2] by the triangle inequality. Furthermore, we assume that each
data is independent and identically distributed (i.i.d.). Hence, Li can be regarded as the empirical
mean of the i.i.d. random variable in [0, 1]. For independent random variables X ∈ [0, 1], Hoeffding’s
inequality derives the following probability for error bounds as:

P(|X − E[X]| ≥ ε) ≤ 2e−2Mε2 , (1)

where ε ≥ 0 is an expected approximation error, and M is the number of samples to calculate X.
Because the objective function of the approximated problem can be interpreted as an empirical loss
of the original objective function of the original problem, this probability can be reformulated for our
distance matching problem as:

P (|Lk(D;θ)− Ld(D;θ)| ≥ ε) ≤ 2e−2NKε
2

, (2)

where Ld(D;θ) is the relative distances for all data, and Lk(D;θ) is the relative distances in the
stochastic environments. Note that both Lk(D;θ) and Ld(D;θ) are bounded within [0, 1] because the

relative distances were normalized. Therefore, with a probability at least 1− 2e−2NKε
2

, we have the
following bound for a given projection function f(x;θ):

|Lk(D;θ)− Ld(D;θ)| ≤ ε. (3)

Practically, the approximation error is less than 10% with a probability of 96.34% for a given dataset
D with N = 100 and the number of samples K = 2.

From the probability of the approximation error in Eq. (2), we can derive the minimum number
of samples for accurate approximation. For a given expected error ε and a probability β, we can
formulate the probability that the approximation error is less than ε with a probability at least β as:

1− 2e−2NKε
2

≥ β. (4)

This inequality can be rewritten with respect to the number of samples K ∈ N+ as:

K ≥ 1

2Nε2
log

(
2

1− β

)
(5)
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Thus, K should be a natural number greater than 1
2Nε2 log

(
2

1−β

)
to ensure that the approximation

error is less than ε with the probability being at least β.

5 Prediction Error of n-Body Problem in Future Time

Figure 1: Extrapolation errors in the future time (20, 30]. The extrapolation errors were measured
by the mean of the prediction errors of the 10 times repetition of the n-body problem with the
random initialization. The black and red solid lines indicate the extrapolation errors of NB-FCNN
and AUNE-FCNN in predicting the future positions of the particles, respectively.

Fig. 1 shows the extrapolation errors of NB-FCNN and AUNE-FCNN in the n-body problem. The
extrapolation errors are presented for each future time in the figure, and the errors were calculated by
the mean of the 10 times repetition of the randomly initialized n-body problems. The black and red
solid lines indicate the extrapolation errors of NB-FCNN and AUNE-FCNN in predicting the future
positions of the particles, respectively. As shown in the figure, AUNE-FCNN (red line) always showed
lower errors in predicting the future positions of the particles.

6 Predicted Trajectories for Different Initial States of n-Body
Problem

In the experiments, we measured the prediction errors using the mean of Frobenius norm [3] from
10 times repetitions for different initial states of the particles. Fig. 2-11 present the simulated and
predicted trajectories of three particles for each different initial state of the n-body problem.

(a) (b) (c)

Figure 2: Simulated and predicted trajectories of three particles in case 1. (a): True trajectories
simulated by a computer software. (b): Predicted trajectories of AUNE-FCNN. (c): Predicted
trajectories of NB-FCNN.

(a) (b) (c)

Figure 3: Simulated and predicted trajectories of three particles in case 2.
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(a) (b) (c)

Figure 4: Simulated and predicted trajectories of three particles in case 3.

(a) (b) (c)

Figure 5: Simulated and predicted trajectories of three particles in case 4.

(a) (b) (c)

Figure 6: Simulated and predicted trajectories of three particles in case 5.

(a) (b) (c)

Figure 7: Simulated and predicted trajectories of three particles in case 6.

(a) (b) (c)

Figure 8: Simulated and predicted trajectories of three particles in case 7.
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(a) (b) (c)

Figure 9: Simulated and predicted trajectories of three particles in case 8.

(a) (b) (c)

Figure 10: Simulated and predicted trajectories of three particles in case 9.

(a) (b) (c)

Figure 11: Simulated and predicted trajectories of three particles in case 10.
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