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SUPPLEMENTARY INFORMATION 

 

S1. General Po2 = f(δ,T) relation for layered cobaltites 

Defect chemistry of each oxide is known to be sufficiently dependent on its actual 

chemical composition. For instance, charge state of a particular impurity in a double cobaltite 

matrix can be expected to significantly influence on resulting expressions relating δ to 

external conditions. Therefore, model equations for every special case will be different. 

Nevertheless, some generalizations can be made assuming the specific charge states for 

added impurities are defined. For instance, it is reasonable to consider only 2+/3+ charged 

dopants for both A- and B-site positions because these cases have been studied most 

extensively in literature [1-3]. Accordingly, the chemical formula of double perovskite can be 

now written as (LnBa)1-xAxCo2–yByO6–δ with A and B standing for the dopants introduced 

into the respective sublattice. Then, generalized charge neutrality requirement can be 

formulated in the following way: 

  A B
Co O3 O2 A Lni Ln2 Co B CoCo 2 V V A Ba Co Bz z // /z z                                   (S1) 

with A
LniAz   and B

CoBz /  denoting A- and B-site dopants while zA and zB standing for their 

effective charge numbers (0 or 1), respectively. Note, “Lni” index for A-site impurity 

indicates it can be introduced either in Ln-site (Ln1) or in Ba-site (Ln2) which is considered 

as fully substituted Ln2 position in the reference crystal chosen [4]. Accordingly, site balance 

conditions would be naturally changed accounting for the respective doping concentrations. 

Finally, the overall interrelations between concentrations of i-th component (placed in N(i) 

position with zi effective charge) and temperature T in j-th quasichemical reaction would be 

established by the corresponding mass action law: 
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where νij denotes stoichiometric coefficient of i-th component, kB – Boltzmann’s constant and 
0
jS  with 0

jH  are depicting the respective standard entropy/enthalpy changes in j-th 

reaction. Combining eqs. (S1), (S2) and site balance conditions one can obtain the following 

equations relating B-site defect concentrations to the overall oxygen stoichiometry in 

cobaltites considered: 
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with A
A LniAzx z     , B

B CoBz /y z      and 0
cdH  depicting enthalpy change of reaction (4) in the 

main text of an article. Note, if zA or zB equal to 0, the respective contribution of x/y in (S1) 

will vanish. In this sense, x and y appearing in (S3) – (S5) are quite different from those 

presented in chemical formula. Accordingly, they would coincide only if 2+ and 3+ formal 

charges are ascribed to the respective dopants. Similarly, one can derive functional 

dependencies of O-sublattice defect concentrations; the most important for the present case 

are those for oxygen vacancies in O3 positions: 
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where 0
odH  is the enthalpy change for oxygen disordering (5) from the main text. With all 

defect concentrations specified one can relate equilibrium oxygen partial pressure (
2OP ) to 

inner stoichiometry of a particular cobaltite using mass action law for oxidation reaction (3): 
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which provides the desired linkage  2O,  f T P  if enthalpy 0
oxH  and entropy 0

oxS  of 

oxidation reaction (3) are known. The overall representation of eq. (S7) can be expanded so 

that to present Po2 as an explicit function of T and δ. After some algebra manipulations one 

can obtain: 
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with    0 0

exp expox ox

B B

S H
ox k k TK    denoting equilibrium constant of oxidation reaction. 

Accordingly, δ values can be obtained numerically from (S8) if all other parameters are 

known. Note, when applying charge neutrality (S1) to the studied Pr1–xYxBaCo2–yNiyO6–δ 

materials one should consider zA = 0 as Y is isovalent dopant to Pr while zB = 1 suggesting Ni 

forms a CoNi /  defect. For other cobaltites, i.e. Gd0.8La0.2Ba1-xLaxCo2O6–δ one should use 

zA = 1 due to Ba being replaced by La in the lattice. 

 

S2. Conductivity model derivation 

Both transport models proposed in the main text heavily rely on the fact that electrical 

conductivity σ can be summed up from partial contributions σi and thus transformed as: 

 p p n n      i e e
i
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where e  is absolute electrical charge, Np, Nn and Ne denote volume concentrations of p-type, 

n-type and metallic-like charge carriers, respectively. These are well defined in the main text 

of an article: Np term can be associated with Co4+ ions, Nn – with Co2+ and Ne – with Co3+ in 

HS state. Accordingly, these concentrations can be directly determined from defect chemistry 

model. Contrary to that, the expressions for mobility terms in eq. (S9) – up for holes, un for 

electrons and ue for metallic subsystem are not so trivial. Below brief descriptions of what 

stands behind the formulated high temperature transport models used in this work are 



outlined. For instance, if one is dealing with semiconducting type of polaron hopping 

transport the general idea of what is the mobility can be written as [5]: 
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   (S10) 

Hence, an averaged movement of a particular carrier (i.e. polaron) through the lattice will be 

mostly influenced by the number of its attempts to overcome the potential barrier and the 

respective probability of successful transition. From a mathematical point of view polaron 

mobility for a k-th carrier is defined as [5]: 
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with #
k  denoting hopping frequency, r0 – polaron jump distance, xk – mole fraction of sites 

available for a hop and #
kE  is energy barrier. One should note xk term is introduced as the 

number of Co3+ sites which n- or p-type carriers can occupy. The respective quantities are 

well defined for both models considered in the main text of an article. To add, r0 value can be 

simply approximated as pseudo-cubic unit cell parameter ac of double perovskite structure. 

Consequently, assuming unit cell volume of Pr1–xYxBaCo2–yNiyO6–δ solid solutions is 32 ca one 

can quickly arrive to a formulation of polaronic conductivity presented in the main text of an 

article. 

When considering delocalized electronic transport one should use other principles in 

order to derive the mobility of the respective charge carriers. For instance, the corresponding 

formulation can be obtained in the framework of conventional band theory and generally 

reads as: 
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Therefore, a particular delocalized charge carrier moves freely from one collision to another 

with average collision rate related to relaxation time with an effective mass parameter 

determining the force acting on it. The principal difference in case of cobaltites studied is the 

presence of “site fraction” multiplier in formula (S12) which appears there due to spatial 

distribution of conduction channels. To be precise, some positions in crystal lattice in both 

models considered are participating in localized charge transport which implies they are to be 



excluded from delocalized conduction pathways. As a result, the “classical” mobility term 

needs to be corrected. When applying this scheme to metallic subsystem one can arrive at the 

following expression for the mobility: 

 
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with EF denoting Fermi energy, τ – relaxation time depending on energy E, *
em  – effective 

mass and xe is a site fraction term which equals unity for metallic component of conductivity 

(the number of carriers is uqual to the total amount of sites). At high temperature limit τ 

parameter can be reasonably approximated in a framework of acoustic scattering [6] which 

after some algebraic manipulations leads to the desired ue ~ T-1 law: 
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where 0 l  is a constant related to acoustic deformation potential in a crystal lattice [6]. Then, 

after several rearrangements the σe  parameter in eqs. (10) and (13) from the main text of an 

article could be expressed as a function of physical quantities – 0 l , effective mass, Fermi 

energy: 
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Additional difficulties arise when delocalized p-type conduction is considered as in the case 

of model II. Then, general expression (S13) appears to be modified due to the necessity of 

averaging relaxation time with respect to energy thus transforming formula (S13) to: 
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with α = E/kBT, *
hm  - effective mass of a hole and hx  - a site fraction term. Note, parameter 

hx  introduced here does not equal unity because the amount of carriers is significantly less 

then the total amount of sites where they can appear (in case of model II these are Co3+ ions 

in IS states located in CoO6 octahedra). Consequently, integrating eq. (S16) with relaxation 

time ascribed to acoustic scattering one can arrive to the expression presented below: 
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which after simple algebra manipulations can be used for evaluating parameter pσ  presented 

in the main text: 
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As can be seen from expressions (S15) and (S18), both parameters pσ  and σe  contain several 

quantities (effective mass, scattering parameter 0 l  etc.) which cannot be independently 

determined from fitting procedures. Consequently, it is convenient to use pσ  and σe  as 

representative terms in conduction models discussed. 

 

S3. Non-stoichiometry/conductivity data fitting results for different cobaltites 

As discussed in the main text of an article, earlier published results on oxygen content 

and electrical conductivity for EBC, GBC and GLBC can be successfully described in a 

framework of theoretical model proposed. The respective fitting results are supplied within 

table S1. 

Table S1. Thermodynamic and transport parameters obtained in the course of fitting 
experimental non-stoichiometry/conductivity data for different layered cobaltites 

Parameter 
Compound 

EBC GBC GLBC 

n
# , s-1 (1.5 ± 0.1)×1013 (1.7 ± 0.13)×1013 - 

p
 , s-1K1/2 (1.4 ± 0.2)×1015 (1.75 ± 0.2)×1015 (2.9 ± 0.5)×1015 

e
 , s-1 (1.0 ± 0.1)×1014 (5.0 ± 1.0)×1014 (1.33 ± 0.09)×1014 

En, kJ/mol 6.5 ± 0.8 6.3 ± 0.7 - 
Es, kJ/mol 7 ± 2 26 ± 3 5.5 ± 0.8 

0
oxH , kJ/mol -71 ± 4 -93 ± 3 -110 ± 3 
0
dH , kJ/mol 12 ± 3 15 ± 4 41 ± 0.5 
0
odH , kJ/mol 125 ± 2 112 ± 0.8 110 ± 15 

0
oxS , J/mol/K -67 ± 2 -89 ± 2 -70 ± 3 
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