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1 Comments on Computational Approach

Central to this investigation is the comparison of Bader atom energies with energies obtained with

band methods. While conceptually undemanding, in practice these comparisons introduces sources

of computational error. Band determined energies exploit variational methods while Bader atomic

energies are calculated via the virial theorem [1, 2, 3]. In the latter case, even small errors in the

calculated core electron energies can produce large total energy errors, which may be minimized

using all electron methods and large basis sets. In turn, to facilitate comparison of Bader atom and

band energies, to the extent possible, the same all electron basis sets and computational framework

should be used for both calculations. The Amsterdam Modeling Suite provides the capabilities

necessary to address many of these issues.

The suite utilizes the Amsterdam Density Functional (ADF) package [4, 5] to calculate the

electronic structure of clusters, and BAND [6, 7, 5] to model extended crystalline systems. Both
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codes use the same Slater-type-orbital (STO) basis functions, though some of the basis functions

available to ADF are not fully supported by BAND, most consequential, the all electron quadruple

zeta basis set including four polarization terms (QZ4P).

This became a factor when modeling the 4d transition metals where a QZ4P basis set was

required to calculate Bader atom energies accurately. Presumably the large basis set was needed

due to the greater number of radial nodes and hence more rapidly varying near nucleus charge

density. Nonetheless, since BAND calculations could not be converged using the QZ4P basis set a

source of computational error was introduced when comparing BAND determined formation energies

with Bader atom energies. As a way of estimating the magnitude of this error, ADF was used to

calculate single atom and large cluster total energies for all the 4d transition metal elements using

both the triple zeta including two polarization terms (TZ2P) and QZ4P basis sets. In general, and

not surprisingly, the single atom energies were lower for the larger basis set by about 10 eV. For

the larger clusters, the total energy per atom was again lower using the QZ4P basis, but this time

by about 10.6 eV per atom. Using the difference between the single atom and large cluster total

energies as an approximation to the formation energy, the QZ4P basis set yields a more negative

formation energy of approximately 0.6 eV per atom.

As a check on the accuracy of Bader atom energies we used the fact that over a Bader atom

the integral of ∇2ρ(r) should be identically zero [8, 9]. Deviations greater than 10−2 are deemed

marginal and indicative of numerical error. We found that the integrated Laplacian of the charge

density over the central Bader atom was sensitive to computational parameters. Best results were

achieved with a high density Voronoi integration scheme (accint = 6), “very good” density fitting

and an appropriate choice of basis set. Even so, in some circumstances the integral of ∇2ρ(r)

over the central Bader atom was slightly greater than 10−2. However, at all times the same value

over the central atom and the atoms of its first coordination shell were within acceptable limits.

It is for this reason that we monitored the per atom energy of a “central cluster”—the central

atom and its nearest neighbor coordination shell—as a function of changing boundary width. All

calculations employed the generalized gradient approximation using the Perdew–Burke–Ernzerhof

exchange-correlation functional (GGA PBE) [10]. Finally, the BAND calculations used a quadratic

tetrahedron method for numerical integration over the Brillouin zone, sampling a minimum of 16 k

points in the irreducible wedge.
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Figure 1: The energy for the aldehyde functional group is defined as the sum of Bader energies of
C, H, and O atoms. This energy is plotted as a function of increasing C atoms in the hydrocarbon
chain using the two representations described.

2 Determining the Bader Energy

The total energy over a volume bounded by zero flux surfaces is well-defined, and the Bader atom

constitutes one such volume. It is common to calculate this energy using the virial theorem, i.e.,

which for a system in mechanical equilibrium asserts that E = −2T where E is the total energy and

T is the kinetic energy. However, DFT methods do not compute a true kinetic energy, rather these

methods compute the kinetic energy of the non-interacting electrons, Tni. Still, though small, there

is a contribution to the true kinetic energy from exchange and correlation and methods are available

[3] that assert the ability to separate this contribution yielding a value denoted as Tc. The total

kinetic energy can then be found as Tc + Tni and the total energy as –2(Tc + Tni). This approach

has been shown to work well in organic systems. Even so, in systems where there are forces acting

on the nuclei (unrelaxed), there will be errors even if Tc were computed exactly.

As an alternative, one can calculate the virial factor, Vf by dividing the systems total energy

by the noninteracting kinetic energy. The virial factor will be approximately, though not exactly,

2. By construction
−Vf

T gives the total system energy. Vf and the non-interacting kinetic energy

of a Bader atoms can now be used to calculate a Bader atom total energy as Vf Tni. This energy

implicitly includes contributions to the total energy from exchange and correlation as well as being

applicable in unrelaxed systems where there are forces acting on the nuclei. However, the approach

assumes that the virial factor is uniform over the system, which we have found to be a reasonable

assumption over nearly homogenous metallic clusters.

The convergence of the Bader energy determined for the aldehyde discussed in the main text



using these two quantities are summarized in Figure 1. Both show the rapid convergence of the

functional group energy, though the virial factor approach converges more slowly and so represents

a worst case scenario. Additionally, studies using Tc to compute total energy have not looked closely

at metals; and some of our initial studies investigating Tc in metals showed unexplainable behavior.

For these reasons, we have chosen the virial factor representation to define Bader energies for our

studies of metallic systems.

3 Relativistic Effects

Relativistic effects will alter Bader energies. However, the codes used to compute Bader energies do

not allow for relativistic corrections. Still, as our arguments are not based on the absolute energies

but rather how these energies evolve as a perturbation is moved to greater distances, the absence

of relativistic correction will not affect the form of this evolution. The basis for this argument is

rooted in the fact that relativistic corrections in 4d transition metals are small and confined almost

exclusively to core orbitals [11]. We expect that the relativistic correction if incorporated would

simply add a constant to the exponentially decaying nearsightedness function.

4 Lattice data

The shell structure for the four lattice types (DC, BCC, HCP, and FCC) discussed in the main text

is provided in Tables 1-4 and pictures of representative clusters shown in Figures 2-5.

Table 1: Face-centered cubic (FCC) shell structure. Row 1: Number of the coordination shell.
Coordination shell zero is the central atom. Row 2: Number of atoms in coordination shell n. Row
3: Total number of atoms in the cluster of n coordination shells. (Hard sphere representations of
some of these clusters are provided in the SI.) Row 4: Radius of the cluster, i.e. distance between
the central atom and the atoms of the nth shell in atomic diameters or equivalently nearest neighbor
separations.

Coordination shell n 0 1 2 3 4 5 6 7 8 9 10

Number of nth neighbors 1 12 6 24 12 24 8 48 6 48 24

Total atoms in cluster 1 13 19 43 55 79 87 135 141 189 213

Cluster radius 0 1
√
2

√
3 2

√
5

√
6

√
7 2

√
2 3

√
10



Figure 2: The FCC central 13-atom cluster (left), critical cluster consisting of 5 coordination shells
(middle), and the largest cluster consisting of 10 coordination shells (right).

Table 2: Body-centered cubic (BCC) shell structure. Table layout is identical to that of Table 1.

Coordination shell n 0 1 2 3 4 5 6 7 8 9 10

Number of nth neighbors 1 8 6 12 24 8 6 24 24 24 8

Total atoms in cluster 1 9 15 27 51 59 65 89 113 137 145

Cluster radius 0 1 2
√

1
3 2

√
2
3

√
11
3 2 4

√
1
3

√
19
3 2

√
5
3 2

√
2 3

Figure 3: The BCC central 9-atom cluster (left), critical cluster consisting of 5 coordination shells
(middle), and the largest cluster consisting of 10 coordination shells (right).

Table 3: Hexagonal close-packed (HCP) shell structure. Table layout is identical to that of Table 1.

Coordination shell n 0 1 2 3 4 5 6 7 8 9 10 11

Number of nth neighbors 1 12 6 2 18 12 6 12 12 6 3 12

Total atoms in cluster 1 13 19 21 39 51 57 69 81 87 90 102

Cluster radius 0 1
√
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Figure 4: The HCP central 13-atom cluster (left), critical cluster consisting of 5 coordination shells
(middle), and the largest cluster consisting of 11 coordination shells (right).

Table 4: Diamond cubic (DC) shell structure. Table layout is identical to that of Table 1.

Coordination shell n 0 1 2 3 4 5 6 7 8 9 10 11

Number of nth neighbors 0 4 12 12 6 12 24 16 12 24 12 8

Total atoms in cluster 1 5 17 29 35 47 71 87 99 123 135 143

Cluster radius 0 1 2
√
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Figure 5: (from the left) The DC central 5-atom cluster, the 4-coordination cluster closing the
central atom, the 7-coordination cluster closing the central cluster, and the largest cluster consisting
of 11 coordination shells.

5 Element data

Data from which the graphs shown in the main text were constructed are provided in Tables 5-8.



Table 5: Perturbation energies ∆E of the (single) DC cluster investigated, reported in eV.

Element Diameter (Å) Ef E0 ∆E1 ∆E2 ∆E3 ∆E4 ∆E5 ∆E6 ∆E7 ∆E8 ∆E9 ∆E11

Si 2.352 -5.42 -7865.72 -3.05 -9.01 -5.66 -5.55 -6.09 -6.71 -6.67 -6.12 -5.91 -5.79

Table 6: Perturbation energies ∆E of FCC clusters, reported in eV.

Element Diameter (Å) Ef E0 ∆E1 ∆E2 ∆E3 ∆E4 ∆E5 ∆E6 ∆E7 ∆E9

Al 2.864 -3.78 -6587.00 -8.80 -5.86 -7.20 - -4.65 - -3.48 -4.08

Cu 2.553 -3.54 -44611.75 -3.64 -5.66 -3.83 - -4.37 - -3.56 -3.56

Rh 2.758 -6.78 -127504.31 -3.05 -4.00 -5.87 - -6.32 - -7.08 -

Pd 2.751 -3.99 -134362.32 -1.52 -2.22 -4.07 - -4.71 - -4.88 -

Ag 2.885 -3.71 -141429.58 -1.38 -2.13 -3.83 - -3.90 - -4.01 -

Table 7: Perturbation energies ∆E of BCC clusters, reported in eV.

Element Diameter (Å) Ef E0 ∆E1 ∆E2 ∆E3 ∆E4 ∆E5 ∆E6 ∆E7 ∆E8 ∆E10

V 2.624 -8.36 -25665.42 -3.45 -4.35 -7.60 -8.99 -8.74 -8.82 -9.33 -9.04 -8.95

Nb 2.857 -10.22 -102139.80 -2.77 -4.06 -8.71 -9.39 -10.93 -11.02 -11.00 -11.06 -

Mo 2.725 -10.29 -108177.90 -1.57 -9.08 -8.29 -8.82 -10.16 -10.15 -11.51 -11.06 -

Table 8: Perturbation energies ∆E of HCP clusters, reported in eV.

Element Diameter (Å) Ef E0 ∆E1 ∆E2 ∆E3 ∆E4 ∆E5 ∆E6 ∆E7 ∆E9 ∆E11

Tc 2.735 -11.52 -114414.78 -3.95 -4.87 - -9.30 -10.70 - -11.85 -12.06 -12.52

Ru 2.706 -9.79 -120855.98 -4.66 -5.07 - -8.67 -9.78 - -10.84 -11.10 -11.37



6 Dislocation Data

An edge dislocation dipole in Al was generated with the help of molecular dynamics simulations and

corresponding clusters were generated from the structure.

Figure 6: The central 9-atom Al dislcoation cluster (left), critical cluster consisting of 57 atoms
(middle), and the largest cluster consisting of 88 atoms (right). These clusters are centered on the
non-crystallographic hole corresponding to the dislocation.

Table 9: Perturbation energies ∆E to the 9 atom first coordination shell surrounding the dislocation
hole at the center in the Al dislcoation clusters Column 1: Number of atoms in the cluster. Coulmn
2: Cluster radii in units of Å. Coulmn 3: per atom energies of central cluster in eV – relative to
isolated central cluster.

Number of atoms in cluster Cluster radii (Å) ∆E (eV/atom)

9 3.190 0.00

14 3.943 -0.32

17 4.162 -0.45

23 4.453 -0.67

31 4.899 -0.75

38 5.397 -0.87

40 5.446 -0.87

50 5.813 -0.91

57 6.266 -0.80

64 6.452 -0.81

71 6.724 -0.70

88 7.311 -0.70



7 Grain boundary data

Grain boundaries are 2-dimensional defects that are present in real materials. They form the interface

that separates the orientation in which atoms are stacked; and alter the microstructure, thus affecting

performance. The data represented in graphical form in main text is provided in Tables 10-11 and

pictures of important clusters in Figure 7.

Table 10: Perturbation energies ∆E to the 14 atom first coordination shell surrounding the copper
atom at the center in the Σ5 grain boundary clusters Column 1: Number of atoms in the cluster.
Coulmn 2: Cluster radii in units of Å. Coulmn 4: per atom energies of central cluster with Cu at
center in eV – relative to isolated central cluster. Last row: Extrpolated values for ∆E∞.

Number of atoms in cluster Cluster radii (Å) ∆E with Cu (eV/atom)

15 2.906 0.00

23 4.280 0.14

31 4.638 -0.39

39 4.683 -0.55

47 4.812 -0.54

55 5.444 -0.54

63 5.725 -0.40

71 5.764 -0.10

77 5.893 0.28

83 6.528 0.38

93 6.817 0.41

97 6.873 0.44

∞ ∞ 0.45



Figure 7: The grain boundary central 15-atom cluster (left), critical cluster consisting of 63 atoms
(middle), and the largest cluster consisting of 97 atoms (right).

Table 11: Perturbation energies ∆E to the 9 atom first coordination shell surrounding the grain
boundary hole at the center in the Fe Σ5 grain boundary clusters Column 1: Number of atoms in
the cluster. Coulmn 2: Cluster radii in units of Å. Coulmn 4: per atom energies of central cluster in
eV – relative to isolated central cluster.

Number of atoms in cluster Cluster radii (Å) ∆E (eV/atom)

9 2.606 -0.26

11 3.436 -0.26

15 3.507 -0.24

23 3.968 -0.11

29 4.026 -0.17

33 4.240 -0.16

37 4.386 -0.16

41 4.551 -0.03

47 4.965 0.01

53 5.431 0.00
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hone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski,
E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo and A. L. Yakovlev, ADF2016,
SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, 2016.

[6] G. te Velde and E.J. Baerends, Phys. Rev. B, 1991, 44, 7888.

[7] G. Wiesenekker and E.J. Baerends, J. Phys. Condens. Matter, 1991, 3, 6721.

[8] R. F. Bader, Atoms in Molecules: A Quantum Theory, Clarendon Press: Oxford, UK, 1990.

[9] The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design, ed.
C. F. Matta and R. J. Boyd, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2007.

[10] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865–3868.

[11] V. L. Moruzzi, J. F. Janak and A. R. Williams, Calculated electronic properties of metals,
Elsevier, 1978.


	Comments on Computational Approach
	Determining the Bader Energy
	Relativistic Effects
	Lattice data
	Element data
	Dislocation Data
	Grain boundary data

