Supporting information

NP monolayer supported transition-metal single atoms for electrochemical water splitting: a theoretical study

Yanwei Wang^{*a*}, Wu Tian^{*a*}, Jin Wan^{*a*}, Gangquan Xiong^{*b*},

Huijuan Zhang ^{*a**}, Yu Wang ^{*a*, *b**}

^a The School of Chemistry and Chemical Engineering, State Key Laboratory of Power

Transmission Equipment & System Security and New Technology, Chongqing

University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR

China

^b The School of Electrical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China

Corresponding author, Yu Wang; Huijuan Zhang

**E-mail:* <u>wangy@cqu.edu.cn;</u> zhanghj@cqu.edu.cn

Gibbs Free Energy Computations (OER processes)

The Gibbs free energy changes of four elementary steps for OER processes can be described as: $\Delta G_1 = \Delta G_{OH^*}$, $\Delta G_2 = \Delta G_{O^*} - \Delta G_{OH^*}$, $\Delta G_3 = \Delta G_{OOH^*} - \Delta G_{O^*}$, $\Delta G_4 = 4.92 - \Delta G_{OOH^*}$. Under electrode potential U = 0 V, the ΔG for all the four elementary steps (OER processes) can be calculated by:

- (1) $\Delta G_1 = G(OH^*) + 0.5G(H_2) G(H_2O) G(*)$
- (2) $\Delta G_2 = G(O^*) + 0.5G(H_2) G(OH^*)$
- (3) $\Delta G_3 = G(OOH^*) + 0.5G(H_2) G(H_2O) G(O^*)$
- (4) $\Delta G_4 = 4.92 + 2G (H_2O) 2G(H_2) + 0.5 G(H_2) G(OOH^*)$

With Spin vs. Without Spin

On the one hand, we examine the effects of spin polarization to the system for the HER and the results show that there is almost no difference with and without spin treatment in Table S4. On the other hand, Pt@NP shows the lowest η^{OER} of only 0.495 V, which is superior to the current best OER catalysts IrO₂. Thus we also examine the effects of spin polarization on Pt@NP for OER, as shown in Table S5.

To sum up, different spin states only have small and negligible effects on the relative energy difference. Thus, we neglect the effects of spin polarization on the systems and it will not influence our conclusion.

Table S1. Comparison of lattice constants (all in Å) of the studied NP monolayer between the reported simulations and our calculation.

	Our calculation		Reference ¹		Reference ²	
	а	b	a	b	а	b
NP monolayer	3.611	2.733	3.611	2.733	3.61	2.73

Single TM	ΔG_{OH}^{*}	ΔG_{O}^{*}	ΔG_{OOH}^{*}	ΔG_{H}^{*}
atom				
Sc	-1.672	-0.193	1.573	0.083
Ti	-1.614	-1.469	1.967	-0.004
V	-1.515	-1.710	1.791	-0.051
Cr	-0.539	-0.682	2.406	0.712
Mn	0.195	0.145	3.145	0.628
Fe	0.563	0.789	3.683	0.400
Co	0.067	1.260	3.088	0.565
Ni	0.536	2.544	3.574	0.559
Cu	0.822	3.426	3.989	0.861
Nb	-2.065	-2.455	1.261	-0.368
Mo	-0.549	-1.616	2.017	0.221
Tc	0.345	0.295	3.356	0.588
Ru	0.611	0.709	3.689	0.134
Rh	0.713	1.536	3.314	0.549
Pd	1.146	3.338	3.942	0.889
Ag	1.223	4.128	4.260	0.805
Та	-2.473	-2.765	0.967	-0.811
Re	-0.046	-0.453	2.838	0.321
Os	0.079	0.234	3.493	-0.172
Ir	0.931	0.793	4.040	0.017
Pt	1.507	2.849	4.574	0.446
Au	0.374	2.868	3.618	-0.331

Table S2. Adsorption free energies of OH, O, OOH and H (eV) on single TM supported

Single TM	ΔG_1	ΔG_2	ΔG_3	ΔG_4	
atom					
Sc	-1.672	1.479	1.766	3.347	
Ti	-1.614	0.145	3.436	2.953	
V	-1.515	-0.195	3.501	3.129	
Cr	-0.539	-0.143	3.088	2.514	
Mn	0.195	-0.050	3.000	1.775	
Fe	0.563	0.226	2.894	1.237	
Co	0.067	1.193	1.828	1.832	
Ni	0.536	2.008	1.030	1.346	
Cu	0.822	2.604	0.563	0.931	
Nb	-2.065	-0.390	3.716	3.659	
Mo	-0.549	-1.067	3.633	2.903	
Tc	0.345	-0.050	3.061	1.564	
Ru	0.611	0.098	2.980	1.231	
Rh	0.713	0.823	1.778	1.606	
Pd	1.146	2.192	0.604	0.978	
Ag	1.223	2.905	0.132	0.660	
Та	-2.473	-0.292	3.732	3.953	
Re	-0.046	-0.407	3.291	2.082	
Os	0.079	0.155	3.259	1.427	
Ir	0.931	-0.138	3.247	0.880	
Pt	1.507	1.342	1.725	0.346	
Au	0.374	2.494	0.750	1.302	

single TM atom supported on NP monolayer.

Single TM	Witho	out spin	With spin		
atom	$\Delta G_{\mathrm{H}^*}(\mathrm{eV})$	Magnetic	$\Delta G_{H^*}(eV)$	Magnetic	
		moment (µB)		moment (μB)	
Sc	0.083	/	0.084	0	
Ti	-0.004	/	0.061	1.25	
V	-0.051	/	0.218	1.61	
Cr	0.712	/	0.885	2.02	
Mn	0.628	/	0.402	1.13	
Fe	0.400	/	0.415	0.52	
Co	0.565	/	0.558	0.74	
Ni	0.559	/	0.607	0.70	
Cu	0.861	/	0.857	0.33	
Nb	-0.368	/	-0.387	1.39	
Mo	0.221	/	0.275	0	
Tc	0.588	/	0.586	0.02	
Ru	0.134		0.131	0	
Rh	0.549	/	0.508	0.59	
Pd	0.889	/	0.893	0	
Ag	0.805	/	0.808	0	
Та	-0.811	/	-0.724	0.72	
Re	0.321	/	0.327	0	
Os	-0.172	/	-0.166	0	
Ir	0.017	/	0.012	0	
Pt	0.446	/	0.439	0	
Au	-0.331	/	-0.327	0	

Table S4. Comparisons of HER activities of various SACs with and without spin treatment.

System	Without spin				With spin			
	ΔG_1	ΔG_2	ΔG_3	ΔG_4	ΔG_1	ΔG_2	ΔG_3	ΔG_4
Pt@NP	1.507	1.342	1.725	0.346	1.507	1.297	1.770	0.346

Table S5. Comparison of OER activity of Pt@NP with and without spin treatment.

Fig. S1. The energies of NP monolayer calculated with different cut-off.

Fig. S2. The energies of NP monolayer calculated with different *k*-points.

Fig. S3. The optimized configurations of metal anchored on NP monolayer.

Fig. S4. Configurations of species (H) on single TM atom supported on NP monolayer.

Fig. S5. Configurations of adsorbates (OH, O, OOH) on single TM atom supported on NP monolayer.

Fig. S6. The calculated free energy diagram of the OER of TM@NP SACs at the zero potential (U = 0 V). (a) Sc@NP. (b) Ti@NP. (c) V@NP. (d) Cr@NP. (e) Nb@NP. (f) Mo@NP. (g) Ta@NP. (h) Re@NP.

Fig. S7. The calculated free energy diagram of the OER of NP monolayer at the zero potential (U = 0 V), where the potential-determining step of the elementary reaction was marked in red.

Fig. S8. The calculated DOS of the (a) Sc@NP. (b) V@NP. (c) Co@NP. (d) Ru@NP.(e) Rh@NP. (f) Os@NP. (g) Ir@NP. The Fermi level was set at the zero energy and marked by the black dash line.

Fig. S9. The charge density difference as well as the amounts of charge transfer of (a) Sc@NP. (b) V@NP. (c) Co@NP. (d) Ru@NP. (e) Rh@NP. (f) Os@NP. (g) Ir@NP.

Fig. S10. The calculated Pourbaix diagram of Ti@NP.

Fig. S11. The calculated Pourbaix diagram of Pt@NP.

References

- 1. Y. Nie, J. Zhang, W. Chen, Q. Xia, X. Wang and G.-h. Guo, *Phys Rev B*, 2020, **101**.
- 2. Z. Cheng, X. Zhang, H. Zhang, J. Gao, H. Liu, X. Yu, X. Dai, G. Liu and G. Chen, *Applied Surface Science*, 2021, **547**.