Supporting Information

Design of multifunctional spin logic gates based on

manganese porphyrin molecules connected to graphene

electrodes

Wenfei Zhang, Guang-Ping Zhang, Zong-Liang Li, Xiao-Xiao

Fu, Chuan-Kui Wang*, Minglang Wang*

School of Physics and Electronics, Shandong Normal University, Jinan 250358, China

Fig. S1. Spin-resolved I-V curves for three different initial spin configurations named (a) APAP1,(b) PP1, and (c) PAP1. Black line represents the spin-up current and red line represents the spin-down current.

Fig. S2. Distributions of the spin electron density defined as spin up minus spin down for (a) PP,

configuration	Input 1	Input 2	Output	Logic gate	Bias region
(a) $PP(\uparrow\uparrow\uparrow\uparrow)$ $APP(\uparrow\uparrow\uparrow\downarrow)$ $PAP1(\uparrow\downarrow\uparrow\uparrow)$	1	1	0	NOR	(0.1, 0.3]
	1	0	0		
	0	1	0		
$ APAP1(\uparrow \downarrow \uparrow \downarrow) $	0	0	1		
(b) PP($\uparrow\uparrow\uparrow\uparrow$) PAP($\uparrow\uparrow\downarrow\uparrow$) AP1P($\downarrow\uparrow\uparrow\uparrow$) AP1AP($\downarrow\uparrow\uparrow\uparrow$)	1	1	0	NOR	(-0.1, -0.3]
	1	0	0		
	0	1	0		
	0	0	1		

Fig. S3. Designed spin logical NOR gates under the conditions of corresponding initial spin configurations, truth tables and bias region.

Fig. S4. Spin-resolved transmission spectra respond to the bias voltage for (a) APAP1, (b) PP1, and (c, d) PAP1.

Fig. S5. Spin-resolved transmission spectra, the eigenvalues and corresponding eigenstates of MPSH for APAP1, PP1, PAP1, APP, and PP at -0.2V or 0.2V, where the threshold value of eigenstates is set to 0.02 au.

Fig. S6. Spin-resolved transmission spectra, the eigenvalues and corresponding eigenstates of MPSH for APAP1, PP1, PAP1, APP, and PP at -0.3V or 0.3V, where the threshold value of eigenstates is set to 0.02 au.