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In Secs. I and II below we compute the transition dipole moments of valence photoionization.

PARTIAL TRANSITION DIPOLE MOMENTS OF PHOTOIONIZATION

According to eq. (5) the HOMO 5σ orbital of CO

ψ5σ(r) =
∑

n=O,C

ψn,5σ(r−Rn) (S1)

is a coherent superposition of the the wave functions of the oxygen ψO,5σ ≡ ψO,5σ(r − RO) and carbon ψC,5σ ≡
ψC,5σ(r−RC) atoms. Here r and Rn are the radius vector of the electron and of the n-th atom. We need to compute
the transition dipole of the 5σ → ψk photoionization

d10 =

∫
drψ∗k(r)rψ5σ(r) =

∑
n=O,C

∫
dr ψ∗k(r)rψn,5σ(r−Rn) ≈

∑
n=O,C

∫
drψ∗k(r)(r−Rn)ψn,5σ(r−Rn). (S2)

Now we are in stage to transform the continuum wave function ψk(r) to the same origin as the atomic wave function
ψn,5σ(r−Rn). First, let us do this using the plane wave approximation

ψk(r) ≈ 1

(2π)3/2
eık·r =

1

(2π)3/2
eık·Rneık·(r−Rn), (S3)

which is quite good approximation for X-ray photoionization of the valence shell. In fact, the plane-wave approximation

can be strongly improved [1] by replacing the plane wave (2π)−3/2 exp(ık · (r−Rn)) by solution ϕ
(n)
k (r−Rn) of the

Schrödinger equations in the vicinity of the n-th atom

ψk(r) ≈ eık·Rnϕ
(n)
k (r−Rn). (S4)

We assumed in eq.(S2) that 〈ψk|ψn,5σ〉 ≈ 0. This is because 〈ψk|ψn,5σ〉 ≈ e−ık·Rn〈ϕ(n)
k (r −Rn)|ψn,5σ(r −Rn) ≈ 0.

Substitution of the wave functions (S1) and (S4) in eq. (S2) results in the following expression for the transition
dipole moment of the valence ionization

d10 ≈
∑

n=O,C

d
(n)
10 , d

(n)
10 = e−ık·Rnd(n), (S5)
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where

d(n) =

∫
drnϕ

(n)∗
k (rn)rnψn,5σ(rn), rn = r−Rn, (S6)

is the partial transition dipole moment of the ejection of the photoelectron from the 5σ orbital (ψn,5σ(r)) in the vicinity
of the n-th atom. Let us proceed further and write Rn in terms of internuclear radius vector R = RO −RC [1]

RO = αOR, RC = −αCR. (S7)

This allows to get

d
(O)
10 = e−ıαOk·Rd(O), d

(C)
10 = eıαCk·Rd(C). (S8)

The opposite signs in these exponents are very important for the Cohen-Fano interference because (d
(O)
10 )∗d

(C)
10 ∝ eık·R

(see Sec. III).

CALCULATION OF d(n)

In this section we show details of derivation of the eq.(23) for d(n) and clarify the meaning of the coefficients An,
Bn and Cn. Let us choose the molecular frame with the molecular axis along z-axis

R ‖ z, θ = ∠(k,R). (S9)

Using the expansions of the wave functions ψn(r) and ϕ
(n)
k (r)

ψn,5σ(r) = an,5σR
(n)
0 (r)Y00 + bn,5σR

(n)
1 (r)Y1z(r̂), (S10)

ϕ
(n)
k (r) =

∑
lm

χ
(n)
k,l (r)Y ∗lm(k̂)Ylm(r̂) =

∑
lm

χ
(n)
k,l (r)Ylm(k̂)Y ∗lm(r̂)

over spherical harmonics Ylm(r̂) we write d(n) (S6)

d(n) = an,5σ
∑
lm

Y ∗lm(k̂)P
(n)
0l 〈Y00|r̂|Ylm〉+ bn,5σ

∑
lm

Y ∗lm(k̂)P
(n)
1l 〈Y1z|r̂|Ylm〉,

P
(n)
lL =

∞∫
0

drr3χ
(n)∗
k,l (r)R

(n)
L (r), L = 0, 1. (S11)

in terms of the radial integrals P
(n)
Ll and the spherical functions Ylm(k̂). It is convenient to use the expansion of r̂ over

the real spherical functions and the relationship between real (Y1µ(r̂), µ = x, y, z) and complex (Y1m(r̂), m = 0,±1)
spherical function [2]

r̂ =
∑

µ=x,y,z

r̂µeµ =

√
4π

3

∑
µ=x,y,z

Y1µ(r̂)eµ,

Y1x =
Y1−1 − Y11√

2
, Y1y = ı

Y11 + Y1−1√
2

, Y1z = Y10. (S12)

Here eµ is the unit vector along the µ-th axis. Putting together this, the expression for the matrix element [2]

〈Y1z|Y1m′ |Ylm〉 = δm′,−m(−1)m
1√
4π

[
δl,0 +

√
4−m2

5
δl,2

]
(S13)

and

k̂x = sin θ cosϕ, k̂y = sin θ sinϕ, k̂z = cos θ, R̂ = ez (S14)
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we obtain the following expression for the transition dipole moment of our interest

d(n)
x =

1√
4π
an,5σP

(n)
10 k̂x + bn,5σP

(n)
21

1

2

√
3

π
(k̂ · R̂)k̂x

d(n)
y =

1√
4π
an,5σP

(n)
10 k̂y + bn,5σP

(n)
21

1

2

√
3

π
(k̂ · R̂)k̂y, (S15)

d(n)
z =

1√
4π
an,5σP

(n)
10 k̂z + bn,5σP

(n)
01

1

2
√

3π
+ bn,5σP

(n)
21

1

2
√

3π
(3(k̂ · R̂)2 − 1),

These components of d(n) and eq.(S14) allows to write the transition dipole moment d(n) =
∑

µ=x,y,z
d

(n)
µ eµ in the

invariant form valid in any frame

d(n) =
an,5σ√

4π
P

(n)
10 k̂ +

bn,5σ

2
√

3π
(P

(n)
01 − P

(n)
21 )R̂ +

bn,5σ
2

√
3

π
P

(n)
21 (k̂ · R̂)k̂. (S16)

The obtained equation explains the expression (23) for d(n) and clarifies the meaning of the coefficients An, Bn and
Cn in eq.(23) of the main text

An =
an,5σ√

4π
P

(n)
10 , Bn =

bn,5σ

2
√

3π
(P

(n)
01 − P

(n)
21 ), Cn = bn,5σ

√
3

4π
P

(n)
21 . (S17)

COHEN-FANO INTERFERENCE

In the present section we explain the partition of the ionization cross-section (4) in three contributions and explain
why the interference term σint (5) is negligibly small in X-ray ionization of valence electrons. Due to the coherence
of the oxygen and carbon contributions in the 5σ molecular orbital, one can expect two-center interference of the
ψO → ψk and ψC → ψk ionization channels. Let as compute the 5σ ionization cross section using eq. (S5)

σ5σ ∝
1

4π

∫
dR̂|d10|2 =

1

4π

∫
dR̂

∣∣∣∣∣∣
∑

n=O,C

e−ık·Rnd(n)

∣∣∣∣∣∣
2

=
∑

n=O,C

∣∣∣d(n)
∣∣∣2 + 2Re

(
d(O)∗d(C) 1

4π

∫
dR̂eık·R

)
(S18)

=
∑

n=O,C

∣∣∣d(n)
∣∣∣2 + 2Re

(
d(O)∗d(C)

) sin kR

kR
.

Here (but not in the main text) we neglected rather weak dependence on R̂ of the direct terms
∣∣d(n)

∣∣2 in comparison

with the strong R̂ dependence of the interference factor exp(ık ·R). Thus we get eqs. (4) and (5), where

σ5σ = σO + σC + σint, σn ∝
∣∣∣d(n)

∣∣∣2 , σint ∝ 2Re
(
d(O)∗d(C)

) sin kR

kR
. (S19)

One can see that the Cohen-Fano (CF) interference term σint [3] is comparable with the direct terms σn when the
photon frequency is close to the ionization threshold, where sin(kR)/kR ≈ 1 because here the momentum k is small.
However, σint ∝ (kR)−1 is strongly suppressed in the valence X-ray ionization due to the large momentum of the
photoelectron and because of random orientation of free molecules.

POLARIZATION TENSOR

To give more insight in the polarization dependence of the probe X-ray absorption (see eqs. (29) and (30) of the
main text) here we provide in-deep physical analysis, starting from eq.(24) of the main text:

%J0(τ) = (d(n)d21)2

∫
dk̂
∑
M0

∑
J1M1,J′1M

′
1

e
ı(εJ′1

−εJ1 )τ
(S20)

×〈J0M0, 0|eıαnk·R|J ′1M ′1〉〈J ′1M ′1|(e1 · k̂)2(e2 · R̂)2|J1M1〉〈J1M1|e−ıαnk·R|J0M0, 0〉.
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Apparently, %J0(τ) depends only on the angle θ between the polarization vectors e1 and e2. The reason for this is

the random molecular orientation in rotational states J0 (the formal reason for this is integration over R̂ in matrix
elements and summations over all projections of angular momentum M) and integration over all directions of ejection
of the photoelectron. This means that %J0(τ) exactly coincides with %J0(τ) averaged over all orientations of the pair
(e1, e2) with fixed angle θ between them. Following Ref. [4] let us perform this orientational averaging of the product
of the cartesian coordinates of the polarization vectors e1 and e2 (see Sec. IV A)

e1ie1je2ke2l =
1

9

[
δijδkl +

(3 cos2 θ − 1)

5

(
3(δikδjl + δilδjk)

2
− δijδkl

)]
. (S21)

Here overline denotes the averaging over orientations of the pair (e1, e2) with fixed angle θ = ∠(e1, e2). As we will
see below, the anisotropic term (∝ (3 cos2 θ − 1) in the polarization tensor (S21) is the reason for the polarization
dependence of the probe X-ray absorption (see eqs. (29) and (30) of the main text). Eq. (S21) results in the following
expression [4, 5]

(e1 · k̂)2(e2 · R̂)2 =
1

9

[
1 +

1

5
(3 cos2 θ − 1)(3(k̂ · R̂)2 − 1)

]
. (S22)

The replacement (e1 · k̂)2(e2 · R̂)2 in eq. (S20) by (e1 · k̂)2(e2 · R̂)2 gives the following expression for

%J0(τ) = %J0(τ) =
4π

9
(d(n)d21)2(2J0 + 1)

[
1 +

(3 cos2 θ − 1)

10π(2J0 + 1))

∫
dk̂
∑
M0

∑
J1M1,J′1M

′
1

e
ı(εJ′1

−εJ1 )τ
(S23)

×〈J0M0, 0|eıαnk·R|J ′1M ′1〉〈J ′1M ′1|P2(k̂ · R̂)|J1M1〉〈J1M1|e−ıαnk·R|J0M0, 0〉
]

which is the sum of the isotropic time-independent and anisotropic time-dependent ∝ (3 cos2 θ − 1) contributions.
Here P2(x) = (3x2 − 1)/2 is the Legendre polynomial of order 2. This expression explains the structure of the final
eq. (30) of the article. One can show that this equation finally results in eqs.(29) and (30) of the main text. We
would like to point out that the polarization dependence of the probe absorption (eqs.(29) and (30) of the main text)
is nothing special. The same polarization tensor (eqs. (S22) and (S21)) describes the polarization properties of other
resonant two-photon processes, for example resonant inelastic X-ray scattering by free molecules [4, 5].

Derivation of eq.(S21)

In general case, the polarization tensor e1ie1je2ke2l of rang 4 can be constructed as linear combination of three
possible combinations of the products of two Kronecker deltas δijδkl

e1ie1je2ke2l = Aδijδkl +Bδikδjl + Cδilδjk. (S24)

To find the unkown coefficients A, B, and C we should use the following special sums

i = j, k = l :
∑
ik

e1ie1ie2ke2k ≡ 1 = 9A+ 3B + 3C,

i = k, j = l
∑
ij

e1ie2ie1je2j ≡ (e1 · e2)2 = 3A+ 9B + 3C, (S25)

i = l, j = k :
∑
ik

e1ie2ie1ke2k ≡ (e1 · e2)2 = 3A+ 3B + 9C.

Solution of these equations

A =
2− cos2 θ

15
, B = C =

3 cos2 θ − 1

30
(S26)

results in eq.(S21). It is interesting to apply obtained result to the special case of the same polarization vectors
e1 = e2 = e. Since now cos θ = 1 and A = B = C = 1/15 we get well known result [6]

eiejekel =
1

15
(δijδkl + δikδjl + δilδjk). (S27)
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DETAILS OF THE PROBE SIGNAL CALCULATIONS

In this section we derive eqs. (10) and (18) of the main text. Substitution of the solution (9) in expression (8) for
the probability of absorption of the second pulse (see main text) results in the following expression

σk(τ, t) = 2
∑

λ1,λ2,λ′1

Re
[ t∫
−∞

dt3e
γt3〈λ0|G01(t3)|λ1〉e−ı(ω10+Eλ1−ω1)t3〈λ1|G12(t− τ)|λ2〉e−(Γ+γ)teı(ω2−ω21−Eλ2+Eλ1 )t

×
t∫

−∞

dt1

{
〈λ2|G21(t1 − τ)|λ′1〉e

ı(ω21+Eλ2−Eλ′1−ω2)t1eΓt1e−γt1

t1∫
−∞

dt2e
γt2〈λ′1|G10(t2)|λ0〉e

ı(ω10+Eλ′1
−ω1)t2

}]
. (S28)

This equation is too cumbersome. We wish to rewrite it in terms of the evolution operators e−ıH1τ and e−ıH2τ which
makes expression for σk(τ, t) not only significantly simpler but also puts forward the dynamics of the nuclear wave
packet between the pulses. Using condition of completeness∑

λm

|λm〉〈λm| = 1,
∑
λm

|λm〉〈λm|eıEλm t = eıHmt, (S29)

we eliminate the sum over the quantum states λ1, λ2, λ
′
1 in eq. (S28) and obtain the expression for σk(τ, t) in compact

operator form (see eq. (10) in the main text).
Let us now perform integration over time for the short non-overlapping pump and probe pulses using eqs. (12) and

(16) of the main text. Taking into account that G10(t) = E1(t)(e1 · d(n)
10 )/2 and G21(t) = E2(t)(e2 · d21)/2, one can

rewrite eq. (16) as

σk(τ) =
1

8
e−2γτRe

{
〈λ0|(e1 · d(n)

01 )eıH1τ (e2 · d12)e−ıH2τeıH2τ (e2 · d21)e−ıH1τ (e1 · d(n)
10 )|λ0〉

×
∣∣∣ ∞∫
−∞

dtE1(t)e−ıΩ1t
∣∣∣2 ∞∫
−∞

dt

t∫
−∞

dt1E∗2 (t)E2(t1)eı(Ω2+ıΓ)(t−t1)
}
. (S30)

We now turn to the calculation of the integrals in this equation. Assuming the Gaussian temporal envelops (17) for
the pump and probe pulses the integrals in eq. (S30) can be easily computed

∣∣∣ ∞∫
−∞

dtE1(t)e−ıΩ1t
∣∣∣2 = 2|E1|2e−(Ω1τd)2 , (S31)

∞∫
−∞

dt

t∫
−∞

dt1E∗2 (t)E2(t1)eı(Ω2+ıΓ)(t−t1) =
|E2|2

πτ2
d

∞∫
−∞

dt

t∫
−∞

dt1e
−(t2+t21)/2τ2

d eı(Ω2+ıΓ)(t−t1)

=
|E2|2

πτ2
d

∞∫
−∞

dt+e
−t2+/2τ

2
d

∞∫
0

dt−e
−t2−/2τ

2
d eı
√

2(Ω2+ıΓ)t− = 2|E2|2Ψ(Ω2,Γ),

where

Ψ(Ω2,Γ) =
1

τd
√

2π

∞∫
0

dte−t
2/2τ2

d eı
√

2(Ω2+ıΓ)t, (S32)

is the complex Voigt function and t± = (t±t1)/
√

2. Substitution of the eqs. (S31) in eq. (S30) results in the expression

σk(τ) =
|E1E2|2

2
e−2γτe−(Ω1τd)2Φ(Ω2,Γ) (S33)

×〈J0M0, 0|(e1 · d(n)
01 )eıH1τ (e2 · d12)(e2 · d21)e−ıH1τ (e1 · d(n)

10 )|J0M0, 0〉.
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Here Φ(Ω2,Γ) = Re Ψ(Ω2,Γ) (see eq. (19) of the main text). By integrating σk(τ) over the photoelectron momentum
k

σ(τ) = 2

∫
dk

(2π)3
σk(τ), (S34)

one obtains the absorption cross section of the probe X-ray pulse (eq. (18) of the main text). In agreement with the
intuition the dynamics of the nuclear wave packet is fully defined by the evolution e−ıH1τ in the pumped state in
the case of short probe pulse. The formal reason for this is that in eq. (S30) e−ıH2τeıH2τ = 1, while the physical
explanation is that the evolution in the final state does not affect the studied process due to short X-ray pulses (see
eq. (15) and related discussion in the main text).

SPHERICAL FUNCTIONS AND CLEBSCH-GORDAN COEFFICIENTS

Here we collect some important equations of the quantum theory of angular momentum [2] used in the main text.
To get the final expression (28) for %rec

J0
(τ) we use the sum rule for the product of three Clebsch-Gordan coefficients [2]

∑
M0M1

CJ1M1

J0M0jm
C
J′1M1

J0M0j1m
C
J′1M1

J1M120 = (−1)J0+j+J′1
(2J ′1 + 1)

√
2J1 + 1√

2j1 + 1
Cj1mjm20

{
J1J0j
j12J ′1

}
. (S35)

Here we use the conventional notations for Clebsch-Gordan coefficients and 6j-symbols [2]. Let us write down few
equations [2] which are needed for the derivation performed in Sec. 2.3.2 of the main text:

(e2 · R̂)(e2 · R̂) =
1

3
+

√
4π

5

∑
m1m2

em1
2 em2

2 C2M
1m11m2

Y2M (R̂),

∑
m

C20
j−mj1mYj−m(k̂)Yj1m(k̂) =

√
(2j + 1)(2j1 + 1)

4π5
C20
j0j10Y20(k̂),

〈J ′1M ′1|Y2M (R̂)|J1M1〉 =

∫
dR̂YJ1M1

Y2MY
∗
J′1M

′
1

=

√
5(2J1 + 1)

4π(2J ′1 + 1)
C
J′10
J1020C

J′1M
′
1

J1M12M . (S36)

Using the Rayleigh expansion of a plane wave (eq. (25)) we get

〈J1M1, ν1|e−ıαk·R|J0M0, 0〉 = 4π
∑
jm

(−ı)jY ∗jm(k̂)〈J1M1|Yjm(R̂)|J0M0〉〈ν1|jj(αkR)|0〉

= 4π
∑
jm

(−ı)jY ∗jm(k̂)〈ν1|jj(αkR)|0〉

√
(2J0 + 1)(2j + 1)

4π(2J1 + 1)
CJ10
J00j0C

J1M1

J0M0jm
. (S37)
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[4] F. Gel’mukhanov and H. Ågren, Phys. Rev. A, 1994, 49, 4378.
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