Supporting Information

Probing the electronic structure and Au–C bonding in $AuC_{2n}H$ (n = 4-7)

using photoelectron imaging spectroscopy and quantum chemical

calculations

Changcai Han,^{‡a,b} Xiao-Gen Xiong^{‡c}, Jing Hong, ^{a,b} Shuai-Ting Yan,^{b,d} Zejie Fei,^a Hongtao Liu^a, and Changwu Dong,^{*a}

^aKey Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China

^c Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China

^d Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China ‡ These authors contributed equally to this work.

Fig.S1 The PE spectrum (black) at 532 nm, FC simulated curve (blue), and calculated FC factors (red stick) for Au-C stretching vibrational transition, using CAM-B3LYP geometries, frequencies, and of ground anionic and neutral AuC₈H are shown to make comparison. The assignment of 0-0 transition peak at 2.063 eV is given.

Fig.S2 The PE spectrum (black) at 532 nm, FC simulated curve (blue), and calculated FC factors (red stick) for Au-C stretching vibrational transition, using CAM-B3LYP geometries, frequencies, and of ground anionic and neutral $AuC_{10}H$ are shown to make comparison. The assignment of 0-0 transition peak at 2.157 eV is given.

Since electronic bonding energy is close to the detachment photo energy, the PE spectra for $AuC_{12}H^-$ and $AuC_{14}H^-$ are incomplete and difficult to give the FC simulation. For $AuC_{12}H^-$ and $AuC_{14}H^-$, the 0-0 transition (labeled as *x*) are extrapolated to the position at the lower energy of peak *a* by one vibrational quantum of Au-C stretching mode in the neutral ground state.

Fig.S3 Optimized molecule structures of $AuC_{2n}H^-$ (n = 8-11) and their corresponding neutrals at the CAM-B3LYP/AVTZ level. For each n, the bottom shows the anion structure, while the top structure is for the neutral. All bond lengths are shown in Å.

CAM-B3LYP (eV)
2.301
2.325
2.346
2.357

Table S1. The theoretical ADEs of $AuC_{2n}H^-$ (n = 8-11) at CAM-B3LYP/AVTZ level.