What Contributes to the Internal Mass-Transport Resistance of Redox

Species through Porous Thin-Film Electrodes?

Miji E Joy¹, Anand Kumar Tripathi¹, Divya Priyadarshani², Debittree Choudhury¹, and

Manoj Neergat*,1

¹Department of Energy Science and Engineering

² Centre for Research in Nanotechnology & Science

Indian Institute of Technology Bombay (IITB), Powai, Mumbai 400076, India

*Corresponding author. Tel.: +91 22 2576 7893; Fax: +91 22 2576 4890

E-mail: nmanoj@iitb.ac.in

Supporting Information (SI)

EIS pattern of binder-free carbon-thin film electrode in 1 M H₂SO₄

Figure S1 Impedance of the binder-free electrode in the absence of redox species in 1 M H₂SO₄

Fig. S2(a) Nyquist and (b) Bode plot of equimolar (5 mM) solution of BQ/BQH_2 in 1 M H_2SO_4 on binder-free carbon thin-film on the GCD at 400 and 800 rpm, recorded at equilibrium potential (~0.7 V).

Fitting parameters of BQ/BQH₂ on binder-free carbon-modified GCD

Table ST1 Parameters obtained by fitting the EIS pattern recorded at equilibrium potential onbinder-free carbon-modified GCD in equimolar solution (5 mM) of BQ/BQH_2 in 1 M H_2SO_4 .

Rotation	Parameter	Obtaine	Relative		Relative error of the
Rate		d fitting	standard	χ²(Chi-	measured impedance
(rpm)		value	error (%)	square)	
400	$R_{s} \left(\Omega \ cm^{2} ight)$	1.86	2.51	0.0005	2.17
	$R_1(\Omega \text{ cm}^2)$	0.548	6.32		

	$Q_1 (F cm^{-2} s^{\phi-1})$	0.002	8.59		
	φ1	0.753	9.76		
	$R_2(\Omega \text{ cm}^2)$	10.9	1.39		
	$Q_2(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.024	2.51		
	φ ₂	0.738	1.25		
800	$R_{s} \left(\Omega \ cm^{2} ight)$	1.76	1.10	0.0004	2.09
	$R_1(\Omega \text{ cm}^2)$	0.64	6.87		
	$Q_1 \ (F \ cm^{-2} \ s^{\phi-1})$	0.002	4.47	•	
	φ1	0.789	6.6		
	$R_2(\Omega \text{ cm}^2)$	8.26	1.44		
	$Q_2(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.018	3.06		
	φ ₂	0.747	1.30		

Optimization of binder (Nafion) content

Figure S3 (a) Nyquist and (b) Bode plots of equimolar solution of 5 mM BQ/BQH_2 in 1 M

H₂SO₄ at static condition of electrode for various Nafion contents.

Fitting parameters of V⁵⁺/V⁴⁺on Nafion-free and Nafion-containing carbon-modified GCD

Table ST2 Parameters obtained by fitting the EIS pattern recorded at equilibrium potential onNafion-free and Nafion-containing carbon-modified GCD in equimolar solution (200 mM) of V^{5+}/V^{4+} in 3 M H₂SO₄.

Electro	Parameter	Obtaine	Relative standard	χ ² (Chi-square)	Relative error of
de		d fitting	error (%)		the measured
		value			impedance
Nafion-	$R_{s} \left(\Omega \ cm^{2}\right)$	0.803	0.415	0.00002	0.475
free					
	$R_1(\Omega \text{ cm}^2)$	0.41	0.250		
	Q_1 (F cm ⁻² s ^{ϕ-}	0.001	1.85		
	1)				
	φ ₁	0.812	0.281		
	$\mathbf{P}(\mathbf{O} \ \mathrm{am}^2)$				
	$\mathbf{K}_3(\mathbf{S}\mathbf{Z} \operatorname{CHI})$	-	-		
	$Q_3(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	-	-		
	φ ₃	-	-		

	W (Ω cm ² s ^{-1/2})	0.008	1.45		
Nafion- contain	$R_{s} \left(\Omega \ cm^{2}\right)$	0.93	0.932	0.0001	2.15
ing	$R_1(\Omega \text{ cm}^2)$	1.36	8.71		
	$Q_1 (F cm^{-2} s^{\phi})^{-1}$	0.007	9.62		
	•	0.872	4.71		
	$R_3(\Omega \text{ cm}^2)$	9.94	7.36		
	$Q_3(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.038	7.69		
	\$ 3	0.772	4.19		
	$W (\Omega \text{ cm}^2 \text{ s}^{-1/2})$	0.029	7.18		

Bode plots of V⁵⁺/V⁴⁺ on Nafion-free and Nafion-containing carbon-modified GCD

Figure S4 Bode plots of equimolar (200 mM) solution of V^{5+}/V^{4+} in 3 M H₂SO₄ on Nafion-free and Nafion-containing GCD.

Fitting parameters of V^{5+}/V^{4+} on Nafion-containing carbon-modified GCD for various rotation rates

Table ST3 Parameters obtained by fitting the EIS patterns recorded at equilibrium potential (~0.86V) on Nafion-containing carbon-modified GCD in equimolar (200 mM) solution of V^{5+}/V^{4+} in 3M H₂SO₄.

Rotation	Parameter	Obtained fitting	Relative	χ²(Chi-	Relative error
Rate		value	standard	square)	of the measured
(rpm)			error (%)		impedance
400	$R_s \left(\Omega \ cm^2\right)$	1.55	0.618	0.0004	2.11
	$R_1(\Omega \text{ cm}^2)$	2.02	6.79	-	
	$Q_1 (F cm^{-2} s^{\phi-1})$	0.007	8.84	-	
	•	0.917	2.35		
	$R_2(\Omega \text{ cm}^2)$	12.1	3.67	_	
	$Q_2(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.084	2.56		
	\$ _2	0.692	3.16		
800	$R_{s} \left(\Omega \ cm^{2} ight)$	1.59	0.594	0.0005	2.19
	$R_1(\Omega \text{ cm}^2)$	2.08	3.39		
	$Q_1 \ (F \ cm^{-2} \ s^{\phi-1})$	0.009	3.15	•	
	$\mathbf{\phi}_1$	0.873	2.17	•	
	$ m R_2(\Omega~cm^2)$	9.6	5.94		
	$Q_2(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.069	8.98	•	
	ϕ_2	0.788	5.94		
1200	$R_{s} \left(\Omega \ cm^{2} ight)$	1.58	0.494	0.0003	1.83
	$R_1(\Omega \text{ cm}^2)$	2.17	4.05		

	$Q_1 (F cm^{-2} s^{\phi-1})$	0.008	8.24		
	•	0.874	1.63		
	$R_2(\Omega \text{ cm}^2)$	8.59	2.53		
	$Q_2(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.063	2.69		
	•	0.849	2.16		
1600	$R_{s} (\Omega \text{ cm}^{2})$	1.53	0.354	0.0002	1.32
	$R_1(\Omega \text{ cm}^2)$	2.15	3.02		
	Q_1 (F cm ⁻² s ^{\phi-1})	0.008	6.26		
	φ ₁	0.881	1.24		
	$R_2(\Omega \text{ cm}^2)$	7.08	1.91		
	$Q_2(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.058	2.12		
	φ ₂	0.869	1.61		
2000	$R_{s} (\Omega \text{ cm}^{2})$	1.52	0.313	0.0001	1.17
	$R_1(\Omega \text{ cm}^2)$	2.20	2.64		
	Q_1 (F cm ⁻² s ^{\phi-1})	0.008	5.68		
	•	0.886	1.10		
	$R_2(\Omega \text{ cm}^2)$	6.73	1.67		
	$Q_2(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.054	1.93		
	φ ₂	0.885	1.40		
2400	$R_{s} (\Omega cm^{2})$	1.54	0.410	0.0002	1.41
	$R_1(\Omega \text{ cm}^2)$	2.32	3.08		
	$Q_1 (F cm^{-2} s^{\phi-1})$	0.008	6.57		
	φ ₁	0.907	1.65		

$R_2(\Omega \ cm^2)$	6.45	2.03	
 $Q_2(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.053	2.37	
\$ _2	0.876	1.29	

Fitting parameters of BQ/BQH₂ on Nafion-free and Nafion-containing carbonmodified GCD

Table ST4 Parameters obtained by fitting the EIS pattern recorded at equilibrium potential onNafion-free and Nafion-containing carbon-modified GCD in equimolar solution (5 mM) of BQ/BQH_2 in 1 M H₂SO₄.

Electro	Parameter	Obtained	Relative standard	χ²(Chi-	Relative error of
de		fitting	error (%)	square)	the measured
		value			impedance
Nafion- free	$\mathrm{R_{s}}\left(\Omega\ \mathrm{cm^{2}} ight)$	1.74	1.79	0.0006	2.37
	$R_1(\Omega \ cm^2)$	0.225	7.68		
	$Q_1 \ (F \ cm^{-2} \ s^{\phi-1})$	0.0001	5.19		
	$\mathbf{\phi}_1$	1	8.35		
	$R_3(\Omega \text{ cm}^2)$	1.71	4.53		
	$Q_3(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.073	9.2		
	ϕ_3	0.85	5.18		
	W (Ω cm ² s ^{-1/2})	0.004	3.25		
Nafion- contain ing	$ m R_{s}\left(\Omega~cm^{2} ight)$	2.01	0.377	0.0001	0.989
	$R_1(\Omega \text{ cm}^2)$	5.80	5.57		
	$Q_1 \ (F \ cm^{-2} \ s^{\phi-1})$	0.0003	6.24		
	ϕ_1	0.87	1.27		

$R_3(\Omega \ cm^2)$	14.2	3.96	
$O_3(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.005	4.88	
	0.50	2.00	
φ ₃	0.73	2.99	
 W (Ω cm ² s ^{-1/2})	0.004	1.78	

Bode plots of BQ/BQH₂ on Nafion-free and Nafion-containing carbon-modified GCD

Figure S5 Bode plots of equimolar (5 mM) solution of BQ/BQH_2 in 1 M H_2SO_4 on Nafion-free and Nafion-containing GCD.

Figure S6 Nyquist plots recorded at equilibrium potential on Nafion-containing electrode (20 μ L) in equimolar solution (5 mM) of BQ/BQH₂ (1:1) in 1 M H₂SO₄. The respective equivalent circuits are shown in the inset.

The EIS patterns recorded at 1600 rpm are fitted with (a) a series combination of R_s (solution resistance), (R_1 , Q_1) element (charge-transfer process at the high frequency region), and (R_2 , Q_2) element (mass-transfer process; unresolved and distorted semicircle); (b) a series combination of R_s (solution resistance), (Q_1 , (R_1 , W_s)) element (charge-transfer process at the high frequency region and finite length transmissive mass-transport at the low frequency region). The χ^2 (Chi-square) is lower when the equivalent circuit consists of two (R, Q) elements. Their respective circuit parameters are given below.

Table ST5 Parameters obtained by fitting the EIS pattern recorded at equilibrium potential on Nafion-containing (20 μ L) electrode at 1600 rpm in equimolar solution of 5 mM BQ/BQH₂ in 1 M H₂SO₄. The EC used for fitting the data is shown in Fig. S6(a).

Parameter	Obtained fitting	Relative	Relative error of

	value	standard error	χ^2 (Chi-square)	the measured
		(%)		impedance
$R_{s}(\Omega)$	10.4	0.99		
$R_1(\Omega)$	50.94	3.68	-	
$Q_1(F s^{\phi-1})$	0.00006	6.37	-	
φ1	0.845	1.13	0.0002	1.38
$R_2(\Omega)$	201.1	1.61	-	
$Q_2(F s^{\phi-1})$	0.0006	2.39		
φ ₂	0.784	1.47		

Table ST6 Parameters obtained by fitting the EIS pattern recorded at equilibrium potential on Nafion-containing (20 μ L) electrode at 1600 rpm in equimolar solution of 5 mM BQ/BQH₂ in 1 M H₂SO₄. The EC used for fitting the data is shown in Fig. S6(a).

Parameter	Obtained fitting	Relative		Relative error of
	value	standard error	χ²(Chi-square)	the measured
		(%)		impedance
$R_{s}(\Omega)$	10.35	2.45		
$R_1(\Omega)$	45.77	6.54		
$Q_1(F s^{\phi-1})$	0.00007	20.2	0.002	4.75
φ1	0.889	3.22		
W _s -Y _o	0.002	3.47		
W _s –B	0.393	2.62		

 χ^2 (Chi-square) value and the relative error in the measure of the impedance are the least for the circuit contains two (R, Q) elements. It appears that the circuit containing two (R, Q) elements are the best suited for fitting of BQ/BQH₂ EIS patterns.

F-test for the EC of EIS patterns recorded under hydrodynamic conditions on Nafioncontaining electrode

Figure S7 Nyquist plots recorded at equilibrium potential on Nafion-containing electrode in equimolar solution (5 mM) of BQ/BQH₂ (1:1) in 1 M H₂SO₄. The respective equivalent circuits are shown in the inset.

The EIS patterns recorded at 400 rpm are fitted with (a) a series combination of R_s (solution resistance), (R_1 , Q_1) element (charge-transfer process at the high frequency region), and (R_2 , Q_2)

element (mass-transfer process; unresolved and distorted semicircle); (b) a series combination of R_s (solution resistance), (R_1 , Q_1) element (charge-transfer process at the high frequency region), (R_3 , Q_3) element (internal mass-transfer process at the mid-frequency region), and (R_4 , Q_4) (external mass-transfer process at the low frequency region), respectively. The fitting of mid-frequency and low-frequency features in the Nyquist plots are different in both the cases. The χ^2 (Chi-square) is lower when the equivalent circuit consists of three (R, Q) elements. Further clarification is obtained from F-test.

Table ST7 Parameters obtained by fitting the EIS pattern recorded at equilibrium potential onNafion-containing electrode at 400 rpm in equimolar solution of 5 mM BQ/BQH2 in 1 M H2SO4.The EC used for fitting the data is shown in Fig. S7(a).

Parameter	Obtained fitting	Relative		Relative error of
	value	standard error	χ²(Chi-square)	the measured
		(%)		impedance
$R_{s} \left(\Omega \ cm^{2}\right)$	2.09	2.39		
$R_1(\Omega \text{ cm}^2)$	5.82	4.17		
Q_1 (F cm ⁻² s ^{ϕ-1})	0.0002	3.0		
φ1	0.96	5.66	0.0006	2.52
$R_2(\Omega \text{ cm}^2)$	29.14	4.89		
$Q_2 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.006	4.69		
φ ₂	0.537	4.71		

Table ST8 Parameters obtained by fitting the EIS pattern recorded at equilibrium potential onNafion-containing electrode at 400 rpm in equimolar solution of 5 mM BQ/BQH_2 in 1 MH2SO4. The EC used for fitting the data is shown in Fig. S7(b).

Parameter	Obtained fitting	Relative		Relative error of
	value	standard error	χ²(Chi-square)	the measured
		(%)		impedance
$R_{s} \left(\Omega \ cm^{2}\right)$	2.03	1.267		
$R_1(\Omega \text{ cm}^2)$	6.62	1.61		
Q_1 (F cm ⁻² s ^{ϕ-1})	0.0003	1.688		
φ1	0.86	3.548		
$R_3(\Omega \text{ cm}^2)$	7.69	2.5	0.0005	2.22
$Q_3 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.050	3.1		
ф ₃	0.92	1.71		
$R_4(\Omega \text{ cm}^2)$	17.46	2.67		
Q_4 (F cm ⁻² s ^{ϕ-1})	0.0003	2.56		
ф ₄	0.773	1.236		

 $F(\alpha, k, 2N-m-k) = 2.68869$

Where, k=3, m=7 and N=59, $\alpha = 0.05$

$$F_{exp} = \frac{\frac{S_1 - S_2}{(2N - m) - (2N - m - k)}}{\frac{S_2}{(2N - m - k)}} = \frac{\frac{\frac{S_1 - S_2}{k}}{\frac{S_2}{2N - m - k}}}{\frac{S_2}{2N - m - k}}$$

$$S_1 = 2.52, S_2 = 2.221$$
$$F_{exp} = \frac{\frac{0.299}{3}}{\frac{2.221}{108}} = 4.846$$

Since $F_{exp} > F(\alpha, k, 2N-m-k)$, the model consisting of three (R, Q) elements can be accepted in the manuscript for 20 µl Nafion-concentration.

Equivalent circuit fitting parameters of BQ/BQH₂ on Nafion-containing electrode recorded at various rotation rates

Table ST9 Parameters obtained by fitting the EIS pattern recorded at equilibrium potential on N(20) electrode in equimolar solution of 5 mM BQ/BQH2 in 1 M H2SO4.

Here, at 400 rpm, Nyquist plot is fitted with three (R, Q) elements in the EC. The parameters are shown in Table ST6.

Rotation	Parameter	Obtained	Relative		Relative error of
Rate		fitting	standard error	χ²(Chi-	the measured
(rpm)		value	(%)	square)	impedance
800	$R_{s} \left(\Omega \ cm^{2}\right)$	2.03	1.47	0.0008	2.89
	$R_1(\Omega \text{ cm}^2)$	8.53	7.23	-	
	$Q_1 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.0003	7.22	-	
	φ ₁	0.885	3.06	-	
	$R_2(\Omega \text{ cm}^2)$	32.5	4.23		
	$Q_2(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.003	5.65	1	

	φ ₂	0.725	3.91		
1200	$R_{s} \left(\Omega \ cm^{2} ight)$	2.13	0.767	0.0002	1.40
	$R_1(\Omega \text{ cm}^2)$	9.11	4.27	_	
	$Q_1 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.0003	2.52	_	
	φ ₁	0.871	1.25	_	
	$R_2(\Omega \text{ cm}^2)$	37.69	1.72	_	
	$Q_2(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.003	7.20	_	
	ф ₂	0.749	1.61	_	
1600	$R_{s} (\Omega \text{ cm}^{2})$	2.038	0.99	0.0002	1.38
	$R_1(\Omega \text{ cm}^2)$	9.98	3.68	_	
	$Q_1 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.0003	6.37	-	
	φ ₁	0.845	1.13	_	
	$R_2(\Omega \text{ cm}^2)$	39.4	1.61	_	
	$Q_2(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.003	2.39	_	
	¢2	0.784	1.47	_	
2000	$R_{s} (\Omega \text{ cm}^{2})$	1.98	0.551	0.00009	0.953
	$R_1(\Omega \text{ cm}^2)$	10.39	2.67	_	
	$Q_1 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.0003	4.01	_	
	φ ₁	0.853	0.723	_	
	$R_2(\Omega \text{ cm}^2)$	40.29	1.16	-	
	$Q_2(F \text{ cm}^{-2}\text{s}^{\phi-1})$	0.003	1.67	-	
	ф ₂	0.782	1.03	-	
2400	$R_{s} \left(\Omega \ cm^{2}\right)$	2.11	0.798	0.00001	1.23

$R_1(\Omega \text{ cm}^2)$	11.05	3.86
$Q_1 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.0003	5.43
•	0.844	1.01
$R_2(\Omega \text{ cm}^2)$	40.68	1.86
Q_2 (F cm ⁻² s ^{ϕ-1})	0.003	2.48
φ ₂	0.779	1.54

Interaction of the redox species with Nafion for various rotation rates

Figure S8 EIS patterns of 5 mM (a) BQH_2 (b) BQ (c) $BQDSH_2$ and (d) AQDS in 1 M H_2SO_4 recorded at equilibrium potential on Nafion-containing carbon thin-film for various rotation rate

of the electrode. ECs are given in the inset. The symbols and solid lines show experimental and fitted data, respectively.

Interaction of the redox species with Nafion for various time intervals

Figure S9 Time dependence on impedance under hydrodynamic condition (1600 rpm) for (a) 5 mM BQ and (b) 5 mM BQH₂ in 1 M H₂SO₄ at equilibrium potential (~700mV) for equal time intervals on Nafion-containing carbon-thin film.

Table ST10 Different organic redox species are checked for Nafion interaction

Redox species	Interaction with Nafion

Comparison of kinetics

 Table ST11 Comparison of kinetics of the redox couple at stationary condition

Redox system	Electrode modification	$R_{1}(\Omega)$ *Concentration (M)
		(Bulk)

V ⁵⁺ /V ⁴⁺ (200 mM, equimolar solution)	Nafion-free	0.08
V ⁵⁺ /V ⁴⁺ (200 mM, equimolar solution)	Nafion-containing	0.272
BQ/BQH ₂ (5 mM, equimolar solution)	Nafion-free	0.001
BQ/BQH ₂ (5 mM, equimolar solution)	Nafion-containing	0.029
AQDS/AQDSH ₂ (5 mM)	Nafion-free	0.007
AQDS/AQDSH ₂ (5 mM)	Nafion-containing	0.021

Fitting parameters of AQDS/AQDSH₂ on Nafion-free and Nafion-containing carbonmodified GCD

Table ST12 Parameters obtained by fitting the EIS pattern recorded at equilibrium potential (~195mV) on Nafion-free and Nafion-containing carbon-modified GCD in 5 mM of AQDSH2 dissolvedin 1 M H2SO4.

Electro	Parameter	Obtained	Relative		Relative error of the
de		fitting	standard error		measured
		value	(%)	χ²(Chi-	impedance
				square)	_
Nafion-	$R_{s} (\Omega cm^{2})$	1.82	5.09	0.0003	1.82
free					
	$R_1(\Omega \ cm^2)$	1.47	6.06		
	$Q_1 \ (F \ cm^{-2} \ s^{\phi-1})$	0.0001	5.02		
	$\mathbf{\phi}_1$	0.774	8.67		

	$R_3(\Omega \ cm^2)$	24.46	4.77		
	$Q_3(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.005	4.57		
	\$ 3	0.783	1.16		
	$W(\Omega \text{ cm}^2 \text{ s}^{-1/2})$	0.0009	1.89		
Nafion- contain	$R_{s} \left(\Omega \ cm^{2} ight)$	1.97	1.86	0.0007	2.17
ing	$R_1(\Omega \text{ cm}^2)$	4.24	3.2		
	$Q_1 (F cm^{-2} s^{\phi})^{-1}$	0.0003	4.35		
	$\mathbf{\phi}_1$	0.768	6.48		
	$R_3(\Omega \text{ cm}^2)$	43.39	4.45		
	$Q_3(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.00061	9.48		
	ф ₃	0.769	2.89		
	W (Ω cm ² s ^{-1/2})	0.00054	2.47		

Bode plots of $AQDS/AQDSH_2$ on Nafion-free and Nafion-containing carbon-modified GCD

Figure S10 Bode plots of 5 mM AQDSH₂ dissolved in 1 M H_2SO_4 on Nafion-free and Nafioncontaining GCD recorded at equilibrium potential (~195 mV).

Equivalent circuit fitting parameters of AQDS/AQDSH₂ on Nafion-free and Nafioncontaining electrodes recorded at various rotation rates

Table ST13 Parameters obtained by fitting the EIS pattern recorded at equilibrium potential (~195mV) for various rotation rates on Nafion-free carbon-modified GCD in 5 mM ofAQDSH₂ dissolved in 1 M H₂SO₄.

Rotation	Parameter	Obtained	Relative		Relative error
speed of		fitting value	standard error	χ²(Chi-	of the
the			(%)	square)	measured
electrode					impedance

(rpm)					
400	$R_s (\Omega \ cm^2)$	1.76	4.07		
	$R_1(\Omega \text{ cm}^2)$	1.47	2.34		
	$Q_1 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.0002	7.4		
	φ1	0.91	6.9		
	$R_3(\Omega \text{ cm}^2)$	11.05	3.43	0.0002	1.41
	$Q_3(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.005	2.75	0.0002	1.71
	ф ₃	0.793	1.1		
	$R_4(\Omega \text{ cm}^2)$	35.4	4.16		
	$Q_4(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.013	4.57		
	ф ₄	0.76	2.09		
800	$R_{s} \left(\Omega \ cm^{2}\right)$	1.78	4.07		
	$R_1(\Omega \text{ cm}^2)$	1.47	7.34		
	$Q_1 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.0003	7.4		
	•	0.89	6.9		
	$R_3(\Omega \text{ cm}^2)$	11.05	3.43	0.0001	1.125
	Q_3 (F cm ⁻² s ^{ϕ-1})	0.006	3.95		
	¢ 3	0.79	1.23	-	
	$R_4(\Omega \text{ cm}^2)$	27.9	3.96		
	Q_4 (F cm ⁻² s ^{ϕ-1})	0.008	3.95	-	
	ф ₄	0.97	1.75		
1200	$R_{s} (\Omega \text{ cm}^{2})$	1.81	5.75		
	$R_1 (\Omega \text{ cm}^2)$	1.51	1.79	-	

	$Q_1 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.0003	4.18		
	•	0.87	5.6		
	$R_3(\Omega \text{ cm}^2)$	11.22	7.6		
	Q_3 (F cm ⁻² s ^{\$-1})	0.005	4.18	0.00009	0.94
	¢ 3	0.80	1.39		
	$R_4(\Omega \text{ cm}^2)$	24.6	3.8		
	Q_4 (F cm ⁻² s ^{ϕ-1})	0.007	3.85		
	ф ₄	0.94	1.4		
1600	$R_{s} (\Omega \text{ cm}^{2})$	1.81	3.52		
	$R_1(\Omega \text{ cm}^2)$	1.51	2.79		
	$Q_1 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.0003	4.18		
	ф ₁	0.87	5.6		
	$R_3(\Omega \text{ cm}^2)$	11.22	7.6	0.00007	0.847
	Q_3 (F cm ⁻² s ^{\$-1})	0.005	4.18		
	ф ₃	0.80	1.39		
	$R_4(\Omega \text{ cm}^2)$	22.7	3.91		
	$Q_4(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.005	3.81		
	ф ₄	0.91	1.37		
2000	$R_{s} \left(\Omega \ cm^{2}\right)$	1.76	4.07		
	$R_1(\Omega \text{ cm}^2)$	1.47	2.34		
	Q_1 (F cm ⁻² s ^{ϕ-1})	0.0002	7.4		
	φ ₁	0.91	6.9		
	$R_3(\Omega \text{ cm}^2)$	11.05	3.43	0.0001	1.13

	$Q_3 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.005	2.75		
	ф з	0.793	1.1	-	
	$R_4(\Omega \text{ cm}^2)$	22	4.45	-	
	Q_4 (F cm ⁻² s ^{ϕ-1})	0.005	4.52		
	ф ₄	0.88	1.73		
2400	$R_{s} (\Omega \text{ cm}^{2})$	1.76	4.07		
	$R_1(\Omega \text{ cm}^2)$	1.47	2.34		
	$Q_1 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.0002	7.4		
	ф ₁	0.91	6.9	-	
	$R_3(\Omega \text{ cm}^2)$	11.05	3.43	0.0001	1.27
	$Q_3(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.005	2.75	-	
	ф ₃	0.793	1.1	-	
	$R_4(\Omega \text{ cm}^2)$	21.7	5.69	-	
	Q_4 (F cm ⁻² s ^{ϕ-1})	0.004	5.66		
	ф ₄	0.88	2.02		

Table ST14 Parameters obtained by fitting the EIS pattern recorded at equilibrium potential (~195mV) for various rotation rates on Nafion-containing carbon-modified GCD in 5 mM ofAQDSH2 dissolved in 1 M H2SO4.

Rotation	Parameter	Obtained	Relative		Relative error
speed of		fitting value	standard error	χ²(Chi-	of the

the			(%)	square)	measured
electrode					impedance
(rpm)					
(1911)					
400	$R_{s} \left(\Omega \ cm^{2}\right)$	2.04	1.19		
	$R_1(\Omega \text{ cm}^2)$	4.23	2.34		
	$Q_1 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.0004	6.71		
	ф 1	0.74	4.08		
	$R_3(\Omega \text{ cm}^2)$	26.22	4.15	0.0003	1.83
	$Q_3 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.0007	1.05		1.05
	¢ 3	0.784	3.02		
	$R_4(\Omega \text{ cm}^2)$	55.07	4.47		
	$Q_4(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.005	4.47		
	ф 4	0.86	2.93		
800	$R_{s} \left(\Omega \ cm^{2}\right)$	2.04	1.19		
	$R_1(\Omega \text{ cm}^2)$	4.23	1.25		
	Q_1 (F cm ⁻² s ^{ϕ-1})	0.0004	2.71		
	•	0.72	3.38		
	$R_3(\Omega \text{ cm}^2)$	26.22	8.15	0.0002	1.63
	Q_3 (F cm ⁻² s ^{\$-1})	0.0007	1.05		
	ф ₃	0.824	3.05		
	$R_4(\Omega \text{ cm}^2)$	40.5	6.08		
	Q_4 (F cm ⁻² s ^{ϕ-1})	0.004	5.7		
	ф 4	0.89	3.29		

1200	$R_{s}\left(\Omega\ cm^{2} ight)$	2.04	1.19		
	$R_1(\Omega \text{ cm}^2)$	4.24	1.35		
	Q_1 (F cm ⁻² s ^{\phi-1})	0.0004	2.47		
	ф 1	0.72	2.94		
	$R_3(\Omega \text{ cm}^2)$	26.2	7.54	0.0002	1.54
	Q_3 (F cm ⁻² s ^{ϕ-1})	0.0007	3.23		
	ф 3	0.864	3.05		
	$R_4(\Omega \text{ cm}^2)$	35.8	7.01		
	Q_4 (F cm ⁻² s ^{ϕ-1})	0.003	6.9		
	ф 4	0.898	3.35		
1600	$R_{s} \left(\Omega \ cm^{2}\right)$	2.04	1.19		
	$R_1(\Omega \text{ cm}^2)$	4.29	1.39		
	$Q_1 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.0004	1.89		
	ф 1	0.72	2.94		
	$R_3(\Omega \text{ cm}^2)$	26.2	7.54	0.0002	1.49
	$Q_3 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.0007	3.03		
	ф 3	0.864	3.05		
	$R_4(\Omega \text{ cm}^2)$	33.9	1.14		
	Q_4 (F cm ⁻² s ^{ϕ-1})	0.002	8.13		
	ф 4	0.89	3.41		
2000	$R_{s} \left(\Omega \ cm^{2}\right)$	2.04	1.19		
	$R_1(\Omega \text{ cm}^2)$	4.24	1.35		
	Q_1 (F cm ⁻² s ^{\phi-1})	0.0004	2.47		

	\$ 1	0.72	2.94		
	$R_3(\Omega \text{ cm}^2)$	26.22	7.54	0.0002	1.42
	Q_3 (F cm ⁻² s ^{ϕ-1})	0.0007	3.23	_	
	ф ₃	0.864	3.05	_	
	$R_4(\Omega \text{ cm}^2)$	31.25	7.95	-	
	$Q_4(F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.002	8.9		
	ф ₄	0.90	3.62		
2400	$R_{s} \left(\Omega \ cm^{2}\right)$	2.04	1.19		
	$R_1(\Omega \text{ cm}^2)$	4.24	1.35		
	$Q_1 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.0004	2.47		
	φ1	0.72	2.94	-	
	$R_3(\Omega \text{ cm}^2)$	26.22	7.54	0.0002	1.49
	$Q_3 (F \text{ cm}^{-2} \text{ s}^{\phi-1})$	0.0007	3.23	-	
	ф з	0.864	3.11	-	
	$R_4(\Omega \text{ cm}^2)$	26.5	1.82	-	
	Q_4 (F cm ⁻² s ^{ϕ-1})	0.002	1.98	-	
	ф ₄	0.894	3.85		

IR compensation

IR compensation for solution resistance (R_s): From the fitting parameters of the EIS pattern, solution resistance is obtained. The IR drop due to the solution resistance (R_s) is calculated, and subtracted this drop from the applied potential. By plotting this corrected voltage and the current, IR_s drop corrected LSV is obtained. Similarly, the same procedure is applied for resistance to the

transport process (R_2) , internal mass-transport resistance (R_3) , and external mass-transport resistance (R_4) , to obtain their respective resistance corrected LSVs.