Photostability of 2,6-Diaminopurine and its 2'-Deoxyriboside Investigated by Femtosecond Transient Absorption Spectroscopy

Naishka E. Caldero-Rodríguez,^{1‡} Luis A. Ortiz-Rodríguez,^{1‡} Andres A. Gonzalez,^{1⊥} Carlos E. Crespo-Hernández*

¹Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106

*Corresponding author; E-mail: carlos.crespo@case.edu; ORCID: 0000-0002-3594-0890

[†] contributed equally to this work; [⊥] participated as an undergraduate research assistant.

Electronic Supporting Information

Figure S1. Normalized ground state excitation spectra ($\lambda_{em} = 351$ nm) of 2,6-diaminopurine (26DAP, solid red line), recrystallized 26DAP (dashed red line) and 2,6-diaminopurine-2'-deoxyribose (26DAP-d, solid blue line) in phosphate buffer pH 7.4.

Figure S2. Optimized ground state structures of 8 possible tautomers of 26DAP with their relative energies calculated at the B3LYP/cc-pVDZ/CPCM level of theory in water.

0.00 kcal/mol

0.22 kcal/mol

Figure S3. Optimized ground state structures of the N9 and N7 tautomers of 26DAP microsolvated with three water molecules with their relative energies and percentage ground state contribution calculated at the B3LYP/cc-pVDZ/CPCM level of theory in water.

All electronic-structure calculations were performed in ORCA 5.0.¹ Ground state optimizations presented in Figure S3 were performed using density functional theory (DFT), employing the B3LYP hybrid functional² and the cc-pVDZ³ basis set. The percentage of the ground state

contribution (P) of the N9 and N7 tautomers of 26DAP was calculated at room temperature with the relative energies obtained (Δ E, eV) for these tautomers. The following equations were considered:⁴

$$P = e^{-\Delta E/kT}/Z \quad (1)$$
$$Z = \sum e^{-\Delta E/kT} \quad (2)$$

where, $e^{-\Delta E/kT}$ is the ratio of the population of a particular species, Z is the sum of the possible species, k is the Boltzmann's constant (units: eV K⁻¹), and T is the temperature (298 K).

Figure S4. Optimized ground state structures of *syn*- and *anti*-sugar conformations of 26DAP-d with their relative energies calculated at the B3LYP/cc-pVDZ/CPCM level of theory in water.

Table S1. Vertical excitation energies of the N9 tautomer of 26DAP and 26DAP-d calculated at the TD-X/CPCM/def2-TZVP//B3LYP/cc-pVDZ level of theory in water, where X is the hybrid functional used.

Functional	26DAP/N9	26DAP-d
B3LYP	4.88 (0.25)	4.79 (0.25)
PBEO	4.99 (0.26)	4.90 (0.27)
ω B97X	5.29 (0.29)	5.20 (0.30)

Table S1 shows that the hybrid functionals B3LYP, PBEO, and ω B97X severely overestimate the energy of the lowest-energy singlet state (i.e., 4.43 eV based on the maximum of the

experimental absorption spectra) and thus, justifies the use of the BP86 functional for the vertical excitation energies.

Figure S5. Relevant Kohn-Sham orbitals obtained at the TD-BP86/def2-TZVP/CPCM in water for the first excited singlet state of the N7 tautomer of 26DAP with the percentage contribution of single-electron transitions.

Figure S6. Relevant Kohn-Sham orbitals obtained at the TD-BP86/def2-TZVP/CPCM in water for the first excited singlet state of the N9 tautomer of 26DAP with the percentage contribution of single-electron transitions.

Figure S7. Relevant Kohn-Sham orbitals obtained at the TD-BP86/def2-TZVP/CPCM in water for the first excited singlet state of the N9 tautomer of 26DAP-d with the percentage contribution of single-electron transitions.

C2-puckered conical intersection Relevant Dihedral Angle: N2C2N3C4=80°

C6-puckered conical intersection Relevant Dihedral Angle: N6C6C5C4=79°

N7 tautomer

C2-puckered conical intersection Relevant Dihedral Angle: N2C2N3C4=58°

C6-puckered conical intersection Relevant Dihedral Angle: N6C6C5C4=85°

Figure S8. Optimized geometry of the ${}^{1}\pi\pi^{*}$ state and relevant conical intersection found in the C2- and C6-coordinates for the N9 and N7 tautomers of 26DAP at the TD-B3LYP/cc-pVDZ level of theory.

Figure S9. Excited state absorption spectra of the ${}^{1}\pi\pi^{*}$ minimum and Cl_{C6} and Cl_{C2} calculated at the TD-BP86/CPCM/def2-TZVP in water for the N9 and N7 tautomers of 26DAP. Relevant transitions were convoluted with a Gaussian function (FWHM=40 nm).

As shown in Figure S7, the excited state absorption spectra of the $1\pi\pi^*$ state and the relevant conical intersections of 26DAP significantly overlap in the spectral range of 320 to 700 nm. Therefore, it is likely that the evolution-associated spectra (EADS) extracted from the global and target analyses of the transient absorption data consists of a linear combination of the absorption spectra of the $1\pi\pi^*$ minima and the C2 and C6 conical intersections rather than to the "pure" species-associated spectra of specific transient species. Therefore, the EADS reported in Figure S6 may not be easily assigned as the expected or calculated absorption spectra of any particular transient species.

Figure S10. Evolution-associated difference spectra extracted from the global and target analyses of the transient absorption data for (a) 26DAP and (b) 26DAP-d.

Supporting References

- 1. F. Neese, F. Wennmohs, U. Becker and C. Riplinger, J. Chem. Phys., 2020, 152, 224108.
- 2. A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
- 3. T. H. Dunning Jr, J. Chem. Phys., 1989, 90, 1007–1023.
- 4. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2006.