Investigating the Role of Structural Water on the Electrochemical Properties of $\alpha - 2 2 V_2 O_5$ through Density Functional Theory

Kaveen Sandagiripathira,¹ Mohammad Ali Moghaddasi,¹ Robert Shepard,^{1,2*} Manuel Smeu^{1*}

¹Department of Physics, Binghamton University – SUNY, 4400 Vestal Parkway East, Binghamton, New York 13902, United States

²Department of Mathematics and Technology, Alvernia University, 400 Saint Bernardine Street, Reading, Pennsylvania 19607, United States

* Corresponding author: robert.shepard@alvernia.edu (RS), msmeu@binghamton.edu (MS)

Diffusion Calculations

The physical diffusion pathway for Mg in the $2 \times 1 \times 1$ supercell of α -V₂O₅ without H₂O molecules present is shown in Fig. S1. The same diffusion pathway was used for all ions and structures with H₂O present. The energy barriers for all ions investigated as a function of the path distance for a) V₂O₅ and b) V₂O₅-(H₂O)₁ are shown in Fig. S2. The energy barriers for Zn and Al in V₂O₅-(H₂O)₁ are not shown since such calculations failed to converge.

Fig. S1: The ion migration pathway along the *a* lattice vector for α -V₂O₅ with H₂O molecules not shown.

Fig S2: Corresponding ion migration energy barriers in α -V₂O₅ utilizing PBE-D3 for a) V₂O₅ and b) V₂O₅-(H₂O)₁.