Two-dimensional square and hexagonal oxide quasicrystal approximants in SrTiO₃ films grown on Pt(111)/Al₂O₃(0001)

C. Ruano M.,^{*,†,§} T. T. Dorini,^{*,†,§} F. Brix ,^{†,¶} L. Pasquier,[†] M. Jullien,[†] D.

Pierre,[†] S. Andrieu,[†] K. Dumesnil,[†] S. S. Parapari,^{‡,¶} S. Šturm,^{‡,¶} J. Ledieu,^{†,¶}

M. Sicot,^{†,¶} O. Copie,[†] E. Gaudry,^{*,†,¶} and V. Fournée^{*,†,¶}

†Institut Jean Lamour UMR 7198, Université de Lorraine – CNRS, Nancy, France.
‡Jožef Stefan Institute, Jamova Cesta 39, Ljubljana 1000, Slovenia.

¶International Associated Laboratory PACS2, CNRS Université de Lorraine, Nancy, France and Jožef Stefan Institute, Ljubljana, Slovenia. \$Contributed equally to this work.

E-mail: catalina.ruano-merchan@univ-lorraine.fr; thiago.trevizam-dorini@univ-lorraine.fr; emilie.gaudry@univ-lorraine.fr; vincent.fournee@univ-lorraine.fr

Supporting Information Available

Figure 1: STM images of the two variants of the hexagonal approximant. The variant shown in (a) has a central protrusion at the center of the dodecagonal motifs while the one shown in (b) has a vacancy instead.

Figure 2: (a,b) Simulated STM images of the square approximant ($V_{bias} = -1$ V (a) or + 1 V (b), isosurface with charge density equal to 0.1 e nm^{-3}). (c,d) Simulated STM images of the hexagonal approximant with the occupied central protrusion ($V_{bias} = -1$ V (c) or + 1 V (d), isosurface with charge density equal to 0.2 e nm^{-3}). (e,f) Simulated STM images of the hexagonal approximant with the unoccupied central protrusion ($V_{bias} = -1.5$ V (c) or + 1.5 V (d), isosurface with charge density equal to 0.1 e nm^{-3}).