Supplementary Information

Promising application of SiC₂/C₃B heterostructure as a new platform

for lithium-ion batteries

Minrui Yang, Lei Chen, Fan Kong, Jiyuan Guo*, Huabing Shu, Jun Dai

School of Science, Jiangsu University of Science and Technology, Zhenjiang, 212100, China *E-mail: jyguo@just.edu.cn

Fig. S1 Total energy fluctuation and structure of the SiC_2/C_3B heterostructure during the AIMD simulations at (a) 800 K and (b) 1200 K after 5 ps.

Fig. S2 Quasi-particle band structure of the SiC₂/C₃B heterostructure.

Fig. S3 Side views of lithiated SiC₂/C₃B heterostructure with 17 Li atoms.

Fig. S4 (a) Total energy fluctuation and structure of $Li_{44}C_{40}B_8Si_8$ during the AIMD simulations at 350 K after 10 ps. (b) The adsorption energy changing along with the distance between Li atom and the outside surface of C₃B layer.

Fig. S5 The variation in the derivative of strain energy (E_s) of the SiC₂/C₃B heterostructure without adsorption (green solid line) and with saturated adsorption (pink solid line).