Supplementary Material for

Hydrophobic association and solvation of neopentane in Urea, TMAO and Urea-TMAO solution

Timir Hajari*,^{†,1}, Mayank Dixit*,^{†,2} and Hari O. S. Yadav³

*These authors equally contributed to this work.

Dr. Timir Hajari

¹Department of chemistry, City College, 102/1, Raja Rammohan Sarani, Kolkata - 700 009, India

E-mail: timir230@gmail.com

Mayank Dixit ²Researcher, Graduate School of Engineering, Department of Chemical Engineering Kyoto

University-Katsura Nishikyo-ku, Kyoto-shi, Kyoto-fu, 615-8510, Japan

E-mail: mayankdixit.kyoto.iitb@gmail.com and dixit@cheme.kyoto-u.ac.jp

Hari O. S. Yadav ³Postdoctoral Fellow, Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusaku, Nagoya, 464-8603 E-mail: hariyadav.iitd@gmail.com and hari.yadav@chembio.nagoya-u.ac.jp

†Corresponding authors. Email: timir230@gmail.com and mayankdixit.kyoto.iitb@gmail.com

Fig. S1. Radial distribution functions between neopentane-neopentane in water-TMAO (Netz), Water-urea, Water-urea-TMAO (Netz) and water-urea-TMAO (Netz(m)) mixtures.

Fig. S2. Radial distribution functions between neopentane-water in water, water-TMAO (Netz), Water-urea, Water-urea-TMAO (Netz) and water-urea-TMAO (Netz(m)) mixtures.

Fig. S3. Radial distribution function between neopentane-Urea in Water-Urea, water-Urea-TMAO (Netz(m)) and water-urea-TMAO (Netz) mixtures.

Fig. S4. Radial distribution function between neopentane-TMAO in water-TMAO (Netz), water-Urea-TMAO (Netz(m)) and water-urea-TMAO (Netz) mixtures.

Fig. S5. Radial distribution functions between cavity-cavity in water, water-TMAO (Netz), Water-Urea and water-Urea-TMAO (Netz) and water-Urea-TMAO (Netz(m)) mixtures.

Fig. S6. Radial distribution functions between cavity-water in water (w), water-urea (w-ua), water-TMAO (w-ta) and water-urea-TMAO (w-ua-ta) mixtures for Garcia (A) and Netz (B) force fields.

Fig. S7. Radial distribution functions between cavity-water in water, water-TMAO (Netz), water-urea, water-urea-TMAO (Netz) and water-urea-TMAO (Netz(m)) mixtures.

Fig. S8. Radial distribution function between cavity-urea in water-urea (w-ua) and water-urea-TMAO (w-ua-ta) mixtures for Garcia (A) and Netz (B) force fields.

Fig. S9. Radial distribution functions between cavity-Urea in in water-TMAO (Netz) and waterurea-TMAO (Netz(m)) and water-urea-TMAO (Netz) mixtures.

Fig. S10. Radial distribution function between cavity- and TMAO molecules in water-TMAO (w-ta) and water-urea-TMAO (w-ua-ta) mixtures for Garcia (A) and Netz (B) force fields.

Fig. S11. Radial distribution functions between cavity-TMAO in water-TMAO (Netz) and water-urea-TMAO (Netz(m)) and water-urea-TMAO (Netz) mixtures.

	Preferential binding coefficients (γ)						
Mixtures	GARCI	A	NETZ NETZ(m)		Z(m)		
	Urea	TMAO	Urea	TMAO	Urea	TMAO	
water- urea	-2.01±0.07		-2.91±0.38				
water- TMAO		0.18±0.017		-0.05±0.04			
water- urea- TMAO	-1.56±0.24	-0.12±0.03	-0.46±0.32	-0.11±0.05	-0.88±0.22	-0.08±0.04	

Table	S2.	Preferential	binding	coefficients	of cavity	with urea	and TMAC) cosolvents.
Lante		1 I UI UI UI UI UI UI	omanic	COULICICIUS	or cuvity			

Preferential binding coefficients (γ)							
Mixtures	GARCL	A	NET	Ϋ́Ζ	NETZ(m)		
	Urea	TMAO	Urea	TMAO	Urea	TMAO	
water- urea	-16.57±0.08		-19.97±0.118				
water- TMAO		-2.17±0.03		-1.56±0.04			
water- urea- TMAO	-17.28±0.18	-4.51±0.04	-14.90±0.43	-2.30±0.08	-14.99±0.72	-3.00±0.12	

_

Table S3. Solute-solvent interaction energy using Garcia, Netz and Netz(m) force field in water, water-urea, water-TMAO and water-urea-TMAO mixtures. The values are in kJ/mol and errors are less than 1 kJ/mol.

	Interaction Energy	gy (E _{total})/(kJ/mol)	ol)				
Solvent	Garcia Model	Netz Model	Netz(m) Model				
Water	-34	-36					
Urea-water	-39	-41					
TMAO-water	-43	-45					
Urea-TMAO-water	-50	-50	-51				

Table S4. The excess chemical potential obtained by inserting a methane cavity in water, water-Urea, water-TMAO and water-urea-TMAO mixtures for Netz force field.

	$\Delta G_{cavity}/(kJ/mol)$
S. No.	
Water	37.5±0.5
Water-Urea	41.7±0.4
Water-TMAO	41.4±0.7
Water-Urea-TMAO	46.4±1.6

1. Running coordination numbers (RCNs)

The running coordination numbers are defined as

$$n_{\alpha\beta} = 4\pi\rho_{\beta} \int_{r_1}^{r_2} r^2 g_{\alpha\beta}(r) dr$$
(S1)

where $n_{\alpha\beta}$ represents the number of atoms of type β surrounding α in a shell extending from r_1 to r_2 and ρ_β is the number density of β type species in the system. In the case of RCNs calculation in first coordination shell, r_1 is zero and r_2 is the first minimum of radial distribution functions (RDFs). For calculations of the RCNs in the second coordination shell, r_1 is the first minimum of the RDFs and r_2 is the second minimum of the RDFs.

Table S5. The running coordination numbers (values in the rows) around Neopentane in the 1^{st} solvation shell and 2^{nd} solvation shell. Here, N_{neo} = the number of neopentane molecules.

	Garcia model		Netz model		
Mixtures	N _{neo} (in 1 st solvation shell)	N _{neo} (in 2 nd solvation	N _{neo} (in 1 st solvation shell)	N _{neo} (in 2 nd solvation shell)	
		Shell)			
Iw	0.187	0.198	0.144	0.191	
IIw-ua	0.206	0.221	0.16	0.204	
IIIw-tmao	0.169	0.191	0.155	0.169	
IVw-ua-tmao	0.217	0.225	0.212	0.200	

Table S6. The running coordination numbers (values in the rows) around Neopentane in the 1st solvation shell. Here, N_{H2O} = the number of water molecules, N_{Urea} = the number of urea molecules, N_{TMAO} = the number of TMAO molecules.

Mixtures			Neopen	tane		
-		Garcia		Netz		
-	N _{H2O}	N _{Urea}	N _{TMAO}	N _{H2O}	N _{urea}	N _{TMAO}
Iw	36.9	0	0	35.8	0	0
II _{w-ua}	23.8	6.3	0	23.7	6.7	0
III _{w-tmao}	27.9	0	4.0	28.2	0	4.0
IV _{w-ua-tmao}	13.1	7.2	4.0	14.9	7.4	3.8

Table S7. The running coordination numbers (values in the rows) around repulsive neopentane Cavity. Here, N_{H2O} = the number of water molecules, N_{urea} = the number of urea molecules, N_{TMAO} = the number of TMAO molecules.

Mixtures			Ca	avity		
-		Garcia			Netz	Z
-	Nh20	Nurea	Nтмао	Nh20	Nurea	Ntmao
Cw	8.2	0	0	7.3	0	0
Cw-ua	7.6	0.5	0	7.1	0.6	0
Cw-tmao	6.8	0	1.4	6.5	0	1.0
Cw-ua-tmao	5.0	1.3	2.1	5.5	0.9	1.3