Supplementary Information

for

Theoretical Insights into Photo-induced Isomerization Mechanisms

of Phenylsulfinyl Radical PhSO·

Meng-Kai Liu, Jian Li, Quan-Song Li*, Ze-Sheng Li*

Key Laboratory of Cluster Science of Ministry of Education,

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion

Materials, School of Chemistry and Chemical Engineering, Beijing

Institute of Technology, Beijing 100081, China

Corresponding Authors

*liquansong@bit.edu.cn (Q.-S. Li)

*zeshengli@bit.edu.cn (Z.-S. Li)

CONTENTS

Table S1. TD-CAM-B3LYP vertical excitations at 1-D0	3
Table S2. TD-ωB97XD vertical excitations at 1-D ₀ S	4
Table S3. Key structural data of radicals 1 and 2 at D_0 , D_1 , and D_2 statesS	5
Table S4. MS-CASPT2 vertical excitations at 2-D0S	6
Table S5. MS-CASPT2 vertical excitations at Int1-D0S	7
Table S6. MS-CASPT2 vertical excitations at Int3-D0S	8
Figure S1. Related orbitals of radicals 1 and 2 at D_0 , D_1 , and D_2 statesS	9
Figure S2. Electron localization of radicals $1-D_0$ and $2-D_0$	0
Figure S3. MS-CASPT2 energy plot from $1-(D_0/D_1)_x$ to $2-D_0$ S1	1
Figure S4. MS-CASPT2 energy plot from $1-(D_0/D_1)_x$ to TS1-D ₀ S1	2
Figure S5. Related orbitals of $1-(D_0/D_1)_x$ and TS1-D ₀ S1	3
Figure S6. MS-CASPT2 energy plot from $2-(D_0/D_1/D_2)_x$ to TS2-D ₀ S1	4
Figure S7. MS-CASPT2 energy plot from Int1- $(D_0/D_1)_x$ to TS3-D ₀ S1	5
Figure S8. MS-CASPT2 energy plot from Int1- $(D_0/D_1)_x$ to TS4-D ₀ S1	6
Figure S9. MS-CASPT2//CASSCF energy profile for isomerization of 4S1	7
Molecular structures, energies and Cartesian coordinates of critical pointsS1	8

State	Configuration	<i>E</i> /eV	λ/nm	f
D ₀	$\pi^*(SOMO)$	0.00	-	-
D_1	$n_{O} \rightarrow \pi^{*}$	2.22	560	0.0006
D_2	$\pi_1 \rightarrow \pi^*$	3.38	375	0.0187
D_3	$\pi_2 \rightarrow \pi^*$	3.96	313	0.0022
D_4	-	4.12	301	0.0765

Table S1. Relative TD-CAM-B3LYP vertical excitation energy (ΔE), wavelength (λ), configuration and oscillator strength (f) with electron transition for D₁, D₂, and D₃ states by NTO analysis at **1**-D₀.

Transition orbitals in D₃ state

State	Configuration	<i>E</i> /eV	λ/nm	f
D_0	$\pi^*(SOMO)$	0.00	-	-
D_1	$n_0 \rightarrow \pi^*$	2.19	567	0.0006
D_2	$\pi_1 \rightarrow \pi^*$	3.38	367	0.0237
D_3	$\pi_2 \rightarrow \pi^*$	3.94	314	0.0033
D_4	-	4.20	295	0.0760

Table S2. Relative TD- ω B97XD vertical excitation energy (ΔE), wavelength (λ), configuration and oscillator strength (f) with electron transition for D₁, D₂, and D₃ states by NTO analysis at **1**-D₀.

Transition orbitals in D₃ state

			Bond leng	ţth		Angle	Dihedral angle	Fuzz	zy bond or	der
	C1-C2	C1-C6	C1-S12	C1-O12	S12-O13	C1-S12-O13	C2-C1-S21-O13	S12-O13	C1-S12	C1-O13
1- D ₀	1.39	1.39	1.79	_	1.54	108	180	2.22	1.14	-
1- D ₁	1.40	1.39	1.82	-	1.75	94	91	1.79	1.13	-
1- D ₂	1.47	1.46	1.72	-	1.55	109	180	2.05	1.34	-
2- D ₀	1.40	1.37	-	1.41	1.67	121	179	1.16	-	1.14
2- D ₁	1.40	1.37	-	1.39	1.70	120	179	1.12	-	1.17
2- D ₂	1.44	1.43	-	1.29	1.94	117	180	0.90	-	1.35

Table S3. Selected bond lengths (in Å), angles (in °), dihedral angles (in °), and fuzzy bond order of radicals 1 and 2 at D₀, D₁, and D₂ states.

State	Configuration	<i>E</i> /eV	λ/nm	f
	(weight)			
D_0	$\pi_1^*(\text{SOMO})$	0.00	-	-
D_1	$n_{S} \rightarrow \pi_{1}^{*}(0.84)$	0.53	2327	0.0000
D_2	$\pi_1 \rightarrow \pi_1^* (0.50)$	2.49	497	0.0535
D_3	$\pi_2 \rightarrow \pi_1^* (0.42)$	3.47	358	0.0272
D_4	$\pi_2 \rightarrow \pi_2^* (0.30)$	4.29	289	0.0220

Table S4. MS-CASPT2 vertical excitation energy (*E*) and wavelength (λ) at 2-D₀, together with the oscillator strength (*f*), the main electronic configuration with weight in parentheses and the relative orbitals.

A Contraction of the second se			e e e e e e e e e e e e e e e e e e e	
ns	π_1	π_2	${\pi_1}^*$	π_2^*

State	Configuration	E/eV	λ/nm	f
	(weight)			
\mathbf{D}_0	n's (SOMO)	0.00	-	-
D_1	n _s →n' _s (0.76)	0.10	12430	0.0000
D_2	$\pi_1 \rightarrow n'_s (0.27)$	1.75	709	0.0012
D_3	$n_{S} \rightarrow \pi_{1}^{*}(0.69)$	2.74	452	0.0000
D_4	$\pi_2 \rightarrow n'_s (0.27)$	3.04	408	0.0026
π_1	π_2	ns	n's	${{f \pi_1}^*}$

Table S5. MS-CASPT2 vertical excitation energy (*E*) and wavelength (λ) at Int1-D₀, together with the oscillator strength (*f*), the main electronic configuration with weight in parentheses and the relative orbitals.

State	Configuration	<i>E</i> /eV	λ/nm	f
	(weight)			
D_0	π_1^* (SOMO)	0.00	-	-
D_1	$\pi_1 \rightarrow \pi_1^* (0.31)$	2.07	599	0.0009
	$\pi_1^* \to \pi_2^* (0.34)$			
D_2	$n_{o} \rightarrow \pi_{1}^{*}(0.62)$	2.58	480	0.0002
D_3	$\pi_1 \rightarrow \pi_1^* (0.36)$	3.05	406	0.0276
D_4	$\pi_2 \rightarrow \pi_1^* (0.34)$	3.88	319	0.0091
π_1	π_2	no	${\pi_1}^*$	${\pi_2}^*$

Table S6. MS-CASPT2 vertical excitation energy (*E*) and wavelength (λ) at Int3-D₀, together with the oscillator strength (*f*), the main electronic configuration with weight in parentheses and the relative orbitals.

Figure S2. Electron localization of radicals (a) $1-D_0$ and (b) $2-D_0$.

Figure S3. MS-CASPT2 energy plot from $1-(D_0/D_1)_x$ to $2-D_0$. Bond lengths are given in Å.

Figure S4. MS-CASPT2 energy plot from $1-(D_0/D_1)_x$ to TS1-D₀. Bond lengths are given in Å.

Figure S5. Related orbitals of $1-(D_0/D_1)_x$ and $TS1-D_0$.

Figure S6. MS-CASPT2 energy plot from $2-(D_0/D_1/D_2)_x$ to TS2-D₀. Bond lengths are given in Å.

Figure S7. MS-CASPT2 energy plot from Int1- $(D_0/D_1)_x$ to TS3-D₀. Bond lengths are given in Å.

Figure S8. MS-CASPT2 energy plot from Int1- $(D_0/D_1)_x$ to TS4-D₀. Bond lengths are given in Å.

Figure S9. MS-CASPT2//CASSCF energy profile for isomerization of $4-D_0$. Energies are given in eV. Bond lengths are given in Å. Dihedral angels are given in °.

Molecular structures, Cartesian coordinates, MS-CASPT2 absolute energies (in Hartree) and relative energies in parentheses (in eV) of critical points relative to 1-D₀

1-D ₀	-703.935	7090 (0.00)	
С	1.693910	1.332507	0.000017
С	0.321445	1.117741	0.000015
С	-0.159315	-0.186540	-0.000003
С	0.719939	-1.266914	-0.000019
С	2.088261	-1.032434	-0.000016
С	2.570435	0.263198	0.000002
Н	2.072490	2.337703	0.000031
Н	-0.366170	1.940991	0.000026
Н	0.345779	-2.275118	-0.000032
Η	2.770239	-1.862194	-0.000028
Н	3.630083	0.439638	0.000004
S	-1.915531	-0.533965	-0.000008
0	-2.663557	0.809654	0.000018
1 -D ₁	-703.859	7261 (2.07)	
С	1.749360	1.372818	0.133565
С	0.381078	1.220878	0.334616
С	-0.178182	-0.050808	0.291530
С	0.622253	-1.168010	0.049694
С	1.983945	-0.999419	-0.149895
С	2.540985	0.274183	-0.107522
Н	2.184043	2.354517	0.165739
Н	-0.242064	2.074563	0.519581

-2.145529

-1.853922

-0.136509

0.398927 -0.257419

Η

Η

Η

S

0

0.180675

2.606739

3.596678

-1.972298

-2.345205

2.70

1.39 1.39

0.019242

-0.337159

-0.263915

0.524582

-1.180052

1- D ₂	-703.8359	9657 (2.71)	
С	1.811195	1.426491	0.306585
С	0.479036	1.395223	0.333242
С	-0.230811	0.147731	0.043795
С	0.549655	-1.059515	-0.271211
С	1.902543	-0.993483	-0.290734
С	2.588027	0.248575	-0.004281
Н	2.328788	2.343918	0.519696
Н	-0.087801	2.278194	0.565694
Н	0.021595	-1.968303	-0.479855
Н	2.479959	-1.868840	-0.520126
Н	3.657157	0.295117	-0.022132
S	-1.950390	0.134505	0.079633
0	-2.440946	-1.295344	-0.260301
TS1-D 0	-703.8501	445 (2.33)	
C	-1.765485	1.214598	-0.020672
C	-0.381113	1.228532	-0.122211
C	0.332904	0.004058	-0.140785
С	-0.396929	-1.232538	-0.112759
С	-1.740721	-1.215346	-0.027783
С	-2.454290	0.008218	0.021490
Н	-2.303956	2.143102	0.009509
Н	0.165568	2.149815	-0.155217
Н	0.152630	-2.152517	-0.145236
Н	-2.285149	-2.141215	-0.002865
Н	-3.525071	-0.001935	0.090240
S	2.109484	-0.004220	-0.413815
0	1.585114	-0.000486	1.250293
TS1- D ₁	-703.8122	2369 (3.36)	
C	-1.791197	1.189181	-0.028180
С	-0.405123	1.213564	-0.021184
С	0.273903	0.005054	-0.012273
С	-0.400619	-1.212043	-0.017481
С	-1.784344	-1.196807	-0.024863
С	-2.488112	0.004397	-0.034165
Н	-2.321519	2.123746	-0.031787
Н	0.127683	2.141500	-0.011247
Н	0.139846	-2.135786	-0.001909
Н	-2.314840	-2.131030	-0.025211
Н	-3.560168	0.003383	-0.038412
S	2.245988	0.001100	-0.567639
0	1.771487	-0.006193	1.044540

$1 - (D_0/D_1)_x$	-703.8	8463087 (2.07))	
С	0.009674	-0.027035	0.051858	
С	0.001716	0.133888	1.422066	
С	1.218509	0.194154	2.174348	
С	2.431045	0.148519	1.414549	
С	2.421127	-0.011244	0.045549	
С	1.214466	-0.115047	-0.656356	6
Н	-0.928552	-0.076514	-0.472459	
Н	-0.948331	0.227510	1.936167	
Н	3.382396	0.259132	1.922709	
Н	3.357436	-0.049762	-0.483150	
Н	1.213694	-0.234985	-1.727433	
S	1.235328	-0.140848	3.905124	
0	1.230792	-1.703025	3.039941	
2-D ₀	-703.9106	872 (0.68)		
C	1.696025	1.325411	-0.000675	
С	0.308777	1.138133	-0.004588	
С	-0.178823	-0.137753	-0.004744	
С	0.674924	-1.243113	-0.001955	
С	2.037151	-1.039519	0.001740	
С	2.553741	0.260935	0.002469	
Н	2.080664	2.328418	-0.000626	
Н	-0.349249	1.982354	-0.007135	
Н	0.252670	-2.229368	-0.002604	
Н	2.701130	-1.883538	0.004222	
Н	3.615814	0.418728	0.005276	
S	-2.743288	0.660327	0.020309	
0	-1.541526	-0.496748	-0.011684	
2- D ₁	-703.8911	529 (1.21)		
C	1.689551	1.321582	-0.000107	
С	0.301067	1.126205	-0.003831	
С	-0.187577	-0.150872	-0.004664	
С	0.679198	-1.251805	-0.001716	
С	2.037573	-1.039630	0.000684	
С	2.551976	0.264872	0.001670	
Н	2.066992	2.327397	0.000986	
Н	-0.350354	1.977580	-0.008041	
Н	0.264164	-2.240976	-0.001203	
Н	2.705283	-1.880915	0.003242	
Н	3.613119	0.426496	0.004943	
S	-2.730654	0.703917	0.018700	

0

-0.010658

-0.499582

-1.532328

1.94
a

)
J

$2 - D_2$	-703 8387	(102 (2.64)	
с – 22 С	1.664105	1.336563	0.000603
C	0.288281	1.124991	0.002240
С	-0.212626	-0.219717	-0.001259
С	0.712233	-1.325932	0.001183
С	2.051221	-1.068193	0.001039
С	2.532233	0.276746	-0.002265
Η	2.039245	2.343112	0.001519
Η	-0.424102	1.926740	0.005682
Η	0.310308	-2.322898	0.000588
Η	2.757384	-1.877544	0.001155
Η	3.595389	0.451332	-0.004199
S	-2.733515	0.956634	-0.002984
0	-1.472147	-0.517563	-0.003298

$2-(D_0/D_1/$	$(\mathbf{D}_2)_{\mathbf{X}}$	-703.8286474	(2.91)
С	-1.036057	-1.486906	0.221058
С	0.094705	-0.715104	0.563048
С	0.081691	0.696151	0.255463
С	-1.202006	1.328463	0.016865
С	-2.278774	0.551243	-0.256445
С	-2.191989	-0.880755	-0.220694
Н	-1.000675	-2.550942	0.354848
Н	0.842096	-1.092731	1.226954
Н	-1.241307	2.399500	-0.035017
Н	-3.217215	1.011454	-0.505938
Н	-3.05706	-1.465427	-0.465460
S	2.662053	-0.170334	-0.259650
0	1.123616	1.364354	0.110044

$TS2-D_0$	-703.8379	9542 (2.66)	
С	-0.991996	-1.488324	0.183461
С	0.143979	-0.686226	0.528000
С	0.078277	0.720540	0.271684
С	-1.196752	1.349094	0.051384
С	-2.252318	0.546835	-0.251653
С	-2.147153	-0.890023	-0.220098
Η	-0.935985	-2.553622	0.302340
Н	0.768612	-0.991267	1.344119
Н	-1.246896	2.418682	-0.011224
Η	-3.189987	0.990086	-0.531014
Η	-3.011562	-1.478451	-0.461769
S	2.410811	-0.309083	-0.333701
0	1.150040	1.360722	0.133549

Int1-D ₀	-703.8959	9854 (1.08)	
С	-0.654250	-1.403154	0.227548
С	0.475513	-0.440809	0.449726
С	0.054123	1.014858	0.533260
С	-1.243292	1.386356	-0.068827
С	-2.141254	0.440705	-0.392220
С	-1.857811	-0.984958	-0.190179
Н	-0.445940	-2.447384	0.366427
Н	1.047736	-0.693078	1.329345
Н	-1.446283	2.434845	-0.175803
Н	-3.098396	0.717618	-0.793501
Н	-2.645130	-1.692964	-0.369338
S	1.641859	-0.655893	-1.018852
0	0.763420	1.828288	1.068045

Int1-D ₁	-703.8741756 (1.67)

С	-0.518031	-1.271574	0.319357
С	0.517626	-0.261875	0.556442
С	0.048140	1.170330	0.525750
С	-1.255738	1.450085	-0.032921
С	-2.153028	0.390368	-0.393858
С	-1.805446	-0.919876	-0.219040
Η	-0.291607	-2.294505	0.547442
Η	1.143979	-0.449657	1.411892
Η	-1.540330	2.478686	-0.132751
Η	-3.115816	0.643064	-0.794995
Η	-2.488995	-1.704842	-0.477643
S	1.533018	-0.681997	-1.005300
0	0.769486	2.054422	0.946865

Int1-(D ₀ /	$D_1)_x$	-703.8722776	(1.73)
С	-0.559892	-1.303468	0.264968
С	0.518012	-0.310627	0.458790
С	0.048858	1.127391	0.472925
С	-1.234404	1.433691	-0.107662
С	-2.205938	0.379570	-0.374891
С	-1.886415	-0.916650	-0.149966
Н	-0.338244	-2.334334	0.443871
Н	1.056436	-0.513463	1.373564
Н	-1.492562	2.466528	-0.229046
Н	-3.189562	0.653049	-0.701899
Н	-2.621215	-1.688736	-0.281346
S	1.978621	-0.394032	-0.831213
0	0.769561	2.003709	0.913144

1.21 1.83 1.53 1.31

1.32 1.60, 1.74	1.25	
		5

$TS3-D_0$	-703.8672	2622 (1.86)	
С	-0.561790	-1.272417	0.011768
С	0.445641	-0.272146	0.222624
С	0.056632	1.164429	0.205349
С	-1.368835	1.450874	-0.012774
С	-2.270181	0.462582	-0.199296
С	-1.864249	-0.925379	-0.187411
Н	-0.259013	-2.301317	0.012080
Н	1.139083	-0.525393	1.304174
Н	-1.645807	2.487722	-0.019979
Н	-3.305670	0.698347	-0.358819
Н	-2.601686	-1.688167	-0.348856
S	2.220612	-0.733863	0.245432
0	0.858519	2.057355	0.376947
Int2-D ₀	-703.9333160 (0.07)		
С	-0.391213	-1.460212	0.000028

	-705.755.	100 (0.07)	
С	-0.391213	-1.460212	0.000028
С	0.443931	-0.338849	-0.000069
С	-0.130167	1.005905	0.000203
С	-1.591705	1.096363	-0.000083
С	-2.352584	0.002040	0.000027
С	-1.763113	-1.312456	0.000102
Н	0.041149	-2.443231	-0.000002
Η	2.462522	0.801156	-0.000282
Н	-2.009286	2.085217	-0.000240
Н	-3.423721	0.086626	-0.000014
Н	-2.398621	-2.176544	0.000159
S	2.219234	-0.537082	-0.000357
0	0.569010	2.010114	-0.000032

$TS5-D_0$	-703.9327	7145 (0.08)	
С	0.534803	-1.499144	-0.000193
С	-0.419379	-0.452527	-0.000345
С	0.030473	0.924852	0.000014
С	1.444194	1.198708	-0.000159
С	2.307266	0.174735	-0.000219
С	1.866163	-1.198450	-0.000016
Н	0.199142	-2.517838	0.000257
Н	-1.881397	1.013428	0.000216
Н	1.764570	2.222365	-0.000208
Н	3.363853	0.370850	-0.000057
Н	2.601576	-1.979591	0.000222
S	-2.155361	-0.559016	-0.000435
0	-0.835593	1.824987	0.000740

S23

$3-D_0$	-703 9560)899 (-0 55)	
C	-0 458486	-1 477591	0 000074
C C	0.427657	-0.386636	-0.000007
C C	-0.075006	0.925925	-0.0000031
C C	-0.073000	1 128833	0.000031
C C	-2 318250	0.045444	0.000015
C C	-1.819276	-1 266734	0.000085
с ц	-1.817270	-1.200734	0.000117
п п	-0.033904	-2.4/102/	0.000093
	1.020350	1.736440	-0.000132
п	-1.022434	2.130409	-0.000014
П	-3.3/8550	0.214964	0.000116
H	-2.494495	-2.101206	0.000173
S	2.1/59//	-0.660925	-0.000062
0	0.709627	2.013516	-0.000105
$TS4-D_0$	-703.8638	8149 (1.96)	
С	-1.172722	-1.256380	0.609729
С	0.276168	-1.047960	0.639054
С	0.731887	0.812591	0.245306
С	-0.450043	1.474191	-0.334269
С	-1.671500	0.925511	-0.439643
С	-2.043337	-0.396054	0.050655
Н	-1.537045	-2.150488	1.085796
Н	0.801498	-1.370169	1.519923
Н	-0.278640	2.496660	-0.614970
Н	-2.457110	1.531929	-0.851042
Н	-3.089255	-0.640202	0.045590
S	1.246417	-0.894624	-0.809566
0	1.563980	1.326193	0.923406
I (2 D	702 0000		
Int3- D_0	-/03.9090	1995 (0.72)	0.00075
- 			/ \

$m J - D_0$	-/05.9090	J995 (0.7 <i>2</i>)	
С	1.995418	-0.617150	-0.000075
С	0.961737	-1.498722	-0.000070
С	-1.292202	0.386485	0.000105
С	-0.421881	1.571149	0.000105
С	0.936811	1.723522	0.000067
С	2.007320	0.799553	0.000021
Н	2.968762	-1.075619	-0.000156
Н	1.196259	-2.546916	-0.000160
Н	-1.016512	2.465728	0.000090
Н	1.255224	2.751265	0.000080
Н	2.984690	1.244220	0.000019
S	-0.788028	-1.335504	0.000039
0	-2.502228	0.537661	-0.000219

		0.			
	3.3	3		O	
				2	
•	0	0	-0	5	
		3		5	

Int3-D ₁	-703.8462	2028 (2.44)	
С	-3.199869	0.139019	0.743764
С	-2.879696	-0.614584	-0.314420
С	-0.168075	-0.509772	0.019054
С	-0.118259	0.273561	1.095392
С	-1.133677	0.318442	2.147698
С	-2.450403	0.254973	2.003265
Н	-4.093754	0.737265	0.673385
Н	-3.481553	-0.606917	-1.202635
Н	0.735783	0.913684	1.210479
Н	-0.752431	0.478235	3.141400
Н	-3.055455	0.361597	2.886590
S	-1.479900	-1.716485	-0.353948
0	0.746249	-0.545244	-0.954957

$TS6-D_1$	-703.8432896 (2.51)		
С	-3.166761	0.158857	0.697631
С	-2.856938	-0.620917	-0.358680
С	0.025953	-0.384211	0.039360
С	-0.087610	0.339484	1.162478
С	-1.142207	0.273103	2.168508
С	-2.453393	0.199298	1.984833
Н	-4.019479	0.814474	0.607592
Н	-3.419534	-0.553660	-1.270508
Н	0.767344	0.939061	1.402995
Н	-0.799793	0.372858	3.183797
Н	-3.083466	0.231415	2.856332
S	-1.560589	-1.794640	-0.303957
0	0.659240	-0.488622	-0.980516

TS6- (D ₀ /	$(\mathbf{D}_1)_{\mathbf{x}}$	-703.8538703	(2.23)
С	-3.041974	-0.015176	0.790759
С	-2.976328	-0.828621	-0.278592
С	0.038478	0.091301	0.141429
С	0.085868	0.068711	1.464124
С	-1.072555	0.138287	2.339546
С	-2.360242	0.139483	2.073657
Н	-3.744162	0.783479	0.613205
Н	-3.543714	-0.545877	-1.145239
Н	1.081650	0.124054	1.855464
Н	-0.807058	0.299438	3.368965
Н	-3.019078	0.371908	2.894517
S	-2.115123	-2.366537	-0.493225
0	0.144411	0.172853	-1.006652

4,00)

	82
4.31	

$4-D_0$	-703.8650)847 (1.92)	
С	-3.074119	-0.208890	0.636144
С	-3.177857	-1.486341	0.187388
С	0.000000	0.000000	0.000000
С	0.000000	0.000000	1.315101
С	-1.145542	0.340088	2.172750
С	-2.453423	0.258166	1.894900
Н	-3.545689	0.564463	0.009974
Н	-3.674429	-1.652460	-0.751170
Н	0.948707	-0.227617	1.762588
Н	-0.865473	0.711704	3.141592
Н	-3.142162	0.615475	2.641596
S	-2.583337	-2.888275	1.008367
0	0.024997	0.000000	-1.139005

TS-Iso-D ₀	-703.8623462	(2.00)
-----------------------	--------------	--------

С	-0.651653	-0.412162	0.444694
С	-0.147186	0.845494	-0.098239
С	1.113809	1.243558	-0.039967
С	-1.969531	-0.848095	0.388943
С	2.230947	0.500011	0.612042
С	3.049454	-0.262422	-0.055084
Н	0.054688	-1.060424	0.928796
Н	-0.863470	1.488906	-0.572972
Н	1.360782	2.199901	-0.467588
Н	2.447642	0.622411	1.657558
Н	-2.194973	-1.820831	0.842845
0	3.760788	-0.934540	-0.631390
S	-3.300319	0.005130	-0.336939

4-min-D ₀	-703.8	796453 (1.53)	
С	-0.221733	2.184075	1.860004
С	0.162468	1.043975	2.388428
С	-0.545918	3.179688	1.407599
С	-0.531801	-0.243455	2.211334
С	-1.127212	-0.740547	1.084363
С	-1.134135	-0.111044	-0.217903
Н	-1.796895	-0.564787	-1.333947
Н	0.996235	1.114377	3.061514
Н	-0.561938	-0.855268	3.094311
Н	-1.619988	-1.689491	1.170182
Н	-0.549137	0.781603	-0.347809
0	-1.681556	0.002993	-2.239286
S	-2.794039	-1.950937	-1.419418

S26