Supplementary material

EDL structure of ionic liquid-MXene-based supercapacitor and hydrogen bond role on the interface: A molecular dynamics simulation investigation

Ziyi Wang ^a, Junwu Chen ^b, Yao Li ^b, Kun Dong ^{*b} and Yinghao Yu^{*a}

^a School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, P.R China.

^b Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China

Corresponding authors: dongkun@ipe.ac.cn; ceyhyu@scut.edu.cn

Atom	L-J parameters and point charge			
Atom	ε/kcal.mol ⁻¹	σ/Å	charge/e-	
Ti-inner	0.6087	1.9565	0.68	
Ti-outer	0.6087	1.9565	1.04	
С	0.0660	3.5000	-0.74	
Ο	0.1554	3.1656	-0.64	

Table S1 Lennard-Jones components and point charge parameters for $Ti_3C_2O_2$.

Table S2 Lennard-Jones components and point charge parameters for Ti₃C₂(OH)₂.

Atom	Lennard-Jones and point charge parameters			
	ε/kcal.mol ⁻¹	σ/Å	charge/e-	
Ti-inner	0.6087	1.9565	0.64	
Ti-outer	0.6087	1.9565	0.88	
С	0.0660	3.5000	-0.76	
Ο	0.1554	3.1656	-0.79	
Н	0.1554	1.5000	0.35	

Table S3 The ion diffusion coefficients $(10^{-6} \text{ cm}^2 \text{ s}^{-1})$ of the ILs ([HEMIm][NTf₂] and

	D _{cation}	D _{anion}	$D_{cation} + D_{anion}$
[EMIM][NTf ₂]	2.27	1.94	4.21
[HEMIm][NTf ₂]	1.77	1.41	3.18

[EMIM][NTf2]) in the bulk

Fig. S1 A snapshot of the simulation box composed of (a) the $[EMIM][NTf_2]$ and $Ti_3C_2O_2$, (b) the $[HEMIm][NTf_2]$ and $Ti_3C_2(OH)_2$, (c) the $[EMIM][NTf_2]$ and $Ti_3C_2(OH)_2$

Fig. S2 Evolution of the charge density σ on electrode surface during the charging process with applying a series of potential differences to the Ti₃C₂O₂ electrodes for [HEMIm][NTf₂].

Fig. S3 Evolution of the charge density σ on electrode surface during the charging process with applying a series of potential differences to the Ti₃C₂O₂ electrodes for [EMIM] [NTf₂].

Fig. S4 Evolution of the charge density σ on electrode surface during the charging process with applying a series of potential differences to the Ti₃C₂(OH)₂ electrodes for [HEMIm][NTf₂].

Fig. S5 Evolution of the charge density σ on electrode surface during the charging process with applying a series of potential differences to the Ti₃C₂(OH)₂ electrodes for [EMIM] [NTf₂].

Fig. S6 Radial distribution function between N atoms in cations and H atoms in the

Ti₃C₂(OH)₂ electrodes at PZC.

Fig. S7 Radial distribution function between H atoms of cations and O atoms of the $Ti_3C_2(OH)_2$ electrodes at PZC.

Fig. S8 Radial distribution function between H atoms of cations and O atoms of the $Ti_3C_2O_2$ electrodes at PZC.

Fig. S9 (a)Radial distribution function between H atoms of cations and O atoms of $Ti_3C_2O_2$ electrodes at $\Delta \Psi = 4V$. The oxygen atoms in termination of the $Ti_3C_2O_2$ electrodes are denoted by O_{epoxy} . (b) distribution of the O-H...O angle between H_{OH} and O_{epoxy} within the distance less than 3 Å at $\Delta \Psi = 0$ and 4V.

We quoted the calculation method of effective ion accumulation factor (EIA) to evaluate the degree of screening efficiency, following Feng

$$EIA(z) = \frac{\int_{0}^{z} \left[\rho_{N,\alpha}(s) - \rho_{N,\alpha'}(s)\right] ds}{|\sigma|/e}$$

where z is the distance from the electrode surface, σ is the absolute value of the charge in the electrode, e is the electron charge, and $\rho_{counter-ion}$ and ρ_{co-ion} are the number density of the counterion and coion, respectively.

Fig. S10 EIA factor as a function of distance from the MXene electrode with different applied potentials. EIA profile for [EMIM][TFSI] at $Ti_3C_2O_2$ electrode and $Ti_3C_2(OH)_2$ electrode (a, c) and for [HEMIm][NTf₂] at $Ti_3C_2(OH)_2$ electrode (b).

Fig. S11 Surface charge σ_s as a function of the half potential drop across the interface ($\Delta \Psi_{half} = \Psi^{\pm} - \Psi^{bulk} - \text{PZC}$) obtained in two ILs at both electrodes.