Supplementary Information

First-principles calculations of bulk, surface and interfacial phases and properties of silicon graphite composites as anode materials for lithium ion batteries

Stéphane B. Olou'ou Guifo^{a,b}, Jonathan E. Mueller^{a*}, David Henriques^b, Torsten Markus^b

^aVolkswagen Group, Berliner Ring 2, D-38436, Wolfsburg, Germany

^bInstitute of Materials Science and Engineering, Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, D-68153, Mannheim, Germany

*corresponding author: jonathan.edward.mueller@volkswagen.de

A) Linearity between the formation energy and the mixing volume

Fig. S.1: Mixing pressure defined as the ratio of the mixing energy and the mixing volume for stable and metastable (a) Li_XSi_{1-X} and (b) Li_YC_{1-Y} phases.

Fig. S.2: Probability distribution of the mixing pressure for the (a) Li–Si and (b) Li–C systems. The red lines are the normal distribution functions based on the average values and standard deviations.

Fig. S.3: Ground state phase diagram spectrum for the Li–Si and Li–C systems from statistical predictions based on known binary phases.

A normal distribution, of the mixing pressure of the compounds around an excepted value of each of the binary systems is assumed. The mixing volume is used as input parameter for computing the mixing energy region at any predefined confidence interval.

B) Theoretical capacity of silicon and graphite anodes

Tab. S.1: Theoretical gravimetric and volumetric capacities of silicon and graphite from DFT results and from experiments.

Anode system	Maximum volume expansion (%)	State of charge (SoC)	Gravimetric capacity (mA h g ⁻¹)	Volumetric capacity (mA h cm ⁻³)
Silicon		Delithiated	4008	9212
	291 (Li ₂₁ Si ₅)	(discharged)	4200 (exp.)	9660 (exp.)
	410 (exp. Li ₂₂ Si ₅)	Lithiated	1967	2458
	_	(charged)	2010 (exp.)	2370 (exp.)
Graphite		Delithiated	372	853
	12	(discharged)	372 (exp.)	837 (exp.)
	12 (exp.)	Lithiated	339	760
		(charged)	339 (exp.)	747 (exp.)

The experimental (exp.) values are taken from the literature review of Liu et al.¹.

C) Surface tensions of Li_xSi and Li_yC at various orientations and lithium contents

Dhaga	Surface orientation	Surface tension (J m ⁻²)		
rnase	Surface orientation	DFT	optB86b	DFT-D2
С	(100) or $(10\overline{1}0)$ (zigzag)	6.216	7.838	8.084
(hexagonal,	(hexagonal, (110) or $(11\overline{2}0)$ (armchair)		5.095	5.241
P6 ₃ /mmc)	(0001)	-0.001	0.230	0.190
С	(100) (armchair)	3.831	5.024	5.204
(Cmme,	(010) (zigzag)	7.190	8.968	9.355
orthorhombic)	(001)	0.000	0.224	0.181
	(100) or $(10\overline{1}0)$ (armchair)	3.492	3.797	3.955
LiC ₆	$(110) \text{ or } (11\overline{2}0) \text{ (zigzag)}$	3.338	4.547	4.677
(hexagonal,	(0001) (C vs C)	-0.003	0.238	0.192
P6/mmm)	(0001) (C vs Li)	0.340	0.565	0.707
	(0001) (Li vs Li)	0.643	0.783	0.871

 Tab. S.2: Surface tensions of graphite structures with respect to the initial periodic structure for various symmetries and lithium contents.

Fig. S.4: Surface tension as a function of the atomic loading density lithium and silicon slabs with different surface orientations.

The slabs with highest slab density are chosen as representative models for silicon and lithium in this work. They exhibit a convergence around 0.02 J m⁻². Each slab surface tension has a horizontal asymptote corresponding to the infinite loading density.

Fig. S.5: Slab density of simulated Li_xSi slabs.

Fig. S.6: Thermally activated reduction of the dangling bonds of silicon surface atoms throughout AIMD simulations accompanied by the reduction of the surface tension.

Tab. S.3: Reconstruction of Li_xSi surfaces using AIMD for overcoming energy barriers and reach surface equilibrium.

		Surface tension	Surface tension	Energy loss during
Phase	Surface	from GO	from AIMD + GO	surface reconstruction
		(J m ⁻²)	(J m ⁻²)	(J m ⁻²)
Si	{100}	2.329	1.525	0.804
	{110}	1.989	1.725	0.264
	{111}	2.925	1.815	1.110
LiSi	(100)	0.762	0.762	0.000
	(001)	1.117	1.117	0.000
	(110)	0.902	0.902	0.000
Li ₅ Si ₂	(100)	1.093	0.982	0.111
	(001)	0.813	0.813	0.000
	(110)	0.964	0.964	0.000
Li ₁₃ Si ₄	(100)	1.224	0.927	0.297
	(010)	0.963	0.963	0.000
	(001)	0.873	0.874	-0.001
Li ₄ Si	(100)	1.263	1.139	0.124
	(001)	0.918	0.965	-0.047
	(110)	0.686	0.686	0.000
	(210)	1.091	0.858	0.233

AIMD simulations are carried out considering a NVE ensemble with an initial temperature of 500 K, a time step of 2 fs and a total time of 400 fs. GO stands for geometry optimization.

D) Charge density analysis in Li_xSi and Li_yC slabs

Fig. S.7: Total charge density of delithiated and lithiated graphite slabs as carbon and LiC₆, respectively with (0001) surface orientation.

The blue lines represent the total charge density averaged over planes parallel to the slab whereas the slightly smoothed red lines are the integrated total charge densities over a distance of 1 Å perpendicular to the slab. For LiC₆, a lithium termination is considered on the right slab side while the left side is without lithium in order to see the vacuum effects on both lithium adatoms and graphene layers.

Fig. S.8: One-dimensional total charge density of Li_xSi slabs (x = 0; 1; 2.5; 3.25 and 4) with various surface orientations.

The blue lines represent the total charge density averaged over planes parallel to the slab whereas the slightly smoothed red lines are the integrated total charge densities over a distance of 1 Å perpendicular to the slab.

E) Effects of voids on the interface tension between Li_xSi and Li_yC phases

Fig. S.9: Averaged interface tensions of Li_xSi–Li_yC (red line with squares) and Li_xSi–void–Li_yC (blue line with circles) with various configurations as function for the lithium content in silicon.

Literature

(1) Liu, N.; Li, W.; Pasta, M.; Cui, Y. Nanomaterials for electrochemical energy storage. *Front. Phys.* **2014**, *9*, 323–350.